11
2- Quick start
3- ===========
4-
5-
2+ Quick start guide
3+ =================
64
75In the following we provide some pointers about which functions and classes
86to use for different problems related to optimal transport (OT).
@@ -11,6 +9,11 @@ to use for different problems related to optimal transport (OT).
119Optimal transport and Wasserstein distance
1210------------------------------------------
1311
12+ .. note ::
13+ In POT, most functions that solve OT or regularized OT problems have two
14+ versions that return the OT matrix or the value of the optimal solution. For
15+ instance :any: `ot.emd ` return the OT matrix and :any: `ot.emd2 ` return the
16+ Wassertsein distance.
1417
1518Solving optimal transport
1619^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -36,6 +39,10 @@ that will return the optimal transport matrix :math:`\gamma^*`:
3639 # M is the ground cost matrix
3740 T= ot.emd(a,b,M) # exact linear program
3841
42+ The method used for solving the OT problem is the network simplex, it is
43+ implemented in C from [1 ]_. It has a complexity of :math: `O(n^3 )` but the
44+ solver is quite efficient and uses sparsity of the solution.
45+
3946.. hint ::
4047 Examples of use for :any: `ot.emd ` are available in the following examples:
4148
@@ -73,16 +80,19 @@ properties. It can computed from an already estimated OT matrix with
7380 - :any: `auto_examples/plot_compute_emd `
7481
7582
76- .. note ::
77- In POT, most functions that solve OT or regularized OT problems have two
78- versions that return the OT matrix or the value of the optimal solution. Fir
79- instance :any: `ot.emd ` return the OT matrix and :any: `ot.emd2 ` return the
80- Wassertsein distance.
81-
82-
8383Regularized Optimal Transport
8484-----------------------------
8585
86+ Entropic regularized OT
87+ ^^^^^^^^^^^^^^^^^^^^^^^
88+
89+
90+ Other regularization
91+ ^^^^^^^^^^^^^^^^^^^^
92+
93+ Stochastic gradient decsent
94+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^
95+
8696Wasserstein Barycenters
8797-----------------------
8898
@@ -99,8 +109,8 @@ GPU acceleration
99109
100110
101111
102- How to?
103- -------
112+ FAQ
113+ ---
104114
105115
106116
@@ -128,5 +138,121 @@ How to?
1281382. **Compute a Wasserstein distance **
129139
130140
131-
132-
141+ References
142+ ----------
143+
144+ .. [1 ] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011,
145+ December). `Displacement nterpolation using Lagrangian mass transport
146+ <https://people.csail.mit.edu/sparis/publi/2011/sigasia/Bonneel_11_Displacement_Interpolation.pdf> `__.
147+ In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.
148+
149+ .. [2 ] Cuturi, M. (2013). `Sinkhorn distances: Lightspeed computation of
150+ optimal transport <https://arxiv.org/pdf/1306.0895.pdf> `__. In Advances
151+ in Neural Information Processing Systems (pp. 2292-2300).
152+
153+ .. [3 ] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G.
154+ (2015). `Iterative Bregman projections for regularized transportation
155+ problems <https://arxiv.org/pdf/1412.5154.pdf> `__. SIAM Journal on
156+ Scientific Computing, 37(2), A1111-A1138.
157+
158+ .. [4 ] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti,
159+ `Supervised planetary unmixing with optimal
160+ transport <https://hal.archives-ouvertes.fr/hal-01377236/document> `__,
161+ Whorkshop on Hyperspectral Image and Signal Processing : Evolution in
162+ Remote Sensing (WHISPERS), 2016.
163+
164+ .. [5 ] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, `Optimal Transport
165+ for Domain Adaptation <https://arxiv.org/pdf/1507.00504.pdf> `__, in IEEE
166+ Transactions on Pattern Analysis and Machine Intelligence , vol.PP,
167+ no.99, pp.1-1
168+
169+ .. [6 ] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
170+ `Regularized discrete optimal
171+ transport <https://arxiv.org/pdf/1307.5551.pdf> `__. SIAM Journal on
172+ Imaging Sciences, 7(3), 1853-1882.
173+
174+ .. [7 ] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). `Generalized
175+ conditional gradient: analysis of convergence and
176+ applications <https://arxiv.org/pdf/1510.06567.pdf> `__. arXiv preprint
177+ arXiv:1510.06567.
178+
179+ .. [8 ] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), `Mapping
180+ estimation for discrete optimal
181+ transport <http://remi.flamary.com/biblio/perrot2016mapping.pdf> `__,
182+ Neural Information Processing Systems (NIPS).
183+
184+ .. [9 ] Schmitzer, B. (2016). `Stabilized Sparse Scaling Algorithms for
185+ Entropy Regularized Transport
186+ Problems <https://arxiv.org/pdf/1610.06519.pdf> `__. arXiv preprint
187+ arXiv:1610.06519.
188+
189+ .. [10 ] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
190+ `Scaling algorithms for unbalanced transport
191+ problems <https://arxiv.org/pdf/1607.05816.pdf> `__. arXiv preprint
192+ arXiv:1607.05816.
193+
194+ .. [11 ] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016).
195+ `Wasserstein Discriminant
196+ Analysis <https://arxiv.org/pdf/1608.08063.pdf> `__. arXiv preprint
197+ arXiv:1608.08063.
198+
199+ .. [12 ] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016),
200+ `Gromov-Wasserstein averaging of kernel and distance
201+ matrices <http://proceedings.mlr.press/v48/peyre16.html> `__
202+ International Conference on Machine Learning (ICML).
203+
204+ .. [13 ] Mémoli, Facundo (2011). `Gromov–Wasserstein distances and the
205+ metric approach to object
206+ matching <https://media.adelaide.edu.au/acvt/Publications/2011/2011-Gromov%E2%80%93Wasserstein%20Distances%20and%20the%20Metric%20Approach%20to%20Object%20Matching.pdf> `__.
207+ Foundations of computational mathematics 11.4 : 417-487.
208+
209+ .. [14 ] Knott, M. and Smith, C. S. (1984).`On the optimal mapping of
210+ distributions <https://link.springer.com/article/10.1007/BF00934745>`__,
211+ Journal of Optimization Theory and Applications Vol 43.
212+
213+ .. [15 ] Peyré, G., & Cuturi, M. (2018). `Computational Optimal
214+ Transport <https://arxiv.org/pdf/1803.00567.pdf> `__ .
215+
216+ .. [16 ] Agueh, M., & Carlier, G. (2011). `Barycenters in the Wasserstein
217+ space <https://hal.archives-ouvertes.fr/hal-00637399/document> `__. SIAM
218+ Journal on Mathematical Analysis, 43(2), 904-924.
219+
220+ .. [17 ] Blondel, M., Seguy, V., & Rolet, A. (2018). `Smooth and Sparse
221+ Optimal Transport <https://arxiv.org/abs/1710.06276> `__. Proceedings of
222+ the Twenty-First International Conference on Artificial Intelligence and
223+ Statistics (AISTATS).
224+
225+ .. [18 ] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) `Stochastic
226+ Optimization for Large-scale Optimal
227+ Transport <https://arxiv.org/abs/1605.08527> `__. Advances in Neural
228+ Information Processing Systems (2016).
229+
230+ .. [19 ] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet,
231+ A.& Blondel, M. `Large-scale Optimal Transport and Mapping
232+ Estimation <https://arxiv.org/pdf/1711.02283.pdf> `__. International
233+ Conference on Learning Representation (2018)
234+
235+ .. [20 ] Cuturi, M. and Doucet, A. (2014) `Fast Computation of Wasserstein
236+ Barycenters <http://proceedings.mlr.press/v32/cuturi14.html> `__.
237+ International Conference in Machine Learning
238+
239+ .. [21 ] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A.,
240+ Nguyen, A. & Guibas, L. (2015). `Convolutional wasserstein distances:
241+ Efficient optimal transportation on geometric
242+ domains <https://dl.acm.org/citation.cfm?id=2766963> `__. ACM
243+ Transactions on Graphics (TOG), 34(4), 66.
244+
245+ .. [22 ] J. Altschuler, J.Weed, P. Rigollet, (2017) `Near-linear time
246+ approximation algorithms for optimal transport via Sinkhorn
247+ iteration <https://papers.nips.cc/paper/6792-near-linear-time-approximation-algorithms-for-optimal-transport-via-sinkhorn-iteration.pdf> `__,
248+ Advances in Neural Information Processing Systems (NIPS) 31
249+
250+ .. [23 ] Aude, G., Peyré, G., Cuturi, M., `Learning Generative Models with
251+ Sinkhorn Divergences <https://arxiv.org/abs/1706.00292> `__, Proceedings
252+ of the Twenty-First International Conference on Artficial Intelligence
253+ and Statistics, (AISTATS) 21, 2018
254+
255+ .. [24 ] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N.
256+ (2019). `Optimal Transport for structured data with application on
257+ graphs <http://proceedings.mlr.press/v97/titouan19a.html> `__ Proceedings
258+ of the 36th International Conference on Machine Learning (ICML).
0 commit comments