Skip to content

Commit 1e0977f

Browse files
committed
cleaunup gromov + stat guide
1 parent 7f0739f commit 1e0977f

File tree

2 files changed

+142
-16
lines changed

2 files changed

+142
-16
lines changed

docs/source/index.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ Contents
1010
--------
1111

1212
.. toctree::
13-
:maxdepth: 3
13+
:maxdepth: 2
1414

1515
self
1616
quickstart

docs/source/quickstart.rst

Lines changed: 141 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,6 @@
11

2-
Quick start
3-
===========
4-
5-
2+
Quick start guide
3+
=================
64

75
In the following we provide some pointers about which functions and classes
86
to use for different problems related to optimal transport (OT).
@@ -11,6 +9,11 @@ to use for different problems related to optimal transport (OT).
119
Optimal transport and Wasserstein distance
1210
------------------------------------------
1311

12+
.. note::
13+
In POT, most functions that solve OT or regularized OT problems have two
14+
versions that return the OT matrix or the value of the optimal solution. For
15+
instance :any:`ot.emd` return the OT matrix and :any:`ot.emd2` return the
16+
Wassertsein distance.
1417

1518
Solving optimal transport
1619
^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -36,6 +39,10 @@ that will return the optimal transport matrix :math:`\gamma^*`:
3639
# M is the ground cost matrix
3740
T=ot.emd(a,b,M) # exact linear program
3841
42+
The method used for solving the OT problem is the network simplex, it is
43+
implemented in C from [1]_. It has a complexity of :math:`O(n^3)` but the
44+
solver is quite efficient and uses sparsity of the solution.
45+
3946
.. hint::
4047
Examples of use for :any:`ot.emd` are available in the following examples:
4148

@@ -73,16 +80,19 @@ properties. It can computed from an already estimated OT matrix with
7380
- :any:`auto_examples/plot_compute_emd`
7481

7582

76-
.. note::
77-
In POT, most functions that solve OT or regularized OT problems have two
78-
versions that return the OT matrix or the value of the optimal solution. Fir
79-
instance :any:`ot.emd` return the OT matrix and :any:`ot.emd2` return the
80-
Wassertsein distance.
81-
82-
8383
Regularized Optimal Transport
8484
-----------------------------
8585

86+
Entropic regularized OT
87+
^^^^^^^^^^^^^^^^^^^^^^^
88+
89+
90+
Other regularization
91+
^^^^^^^^^^^^^^^^^^^^
92+
93+
Stochastic gradient decsent
94+
^^^^^^^^^^^^^^^^^^^^^^^^^^^
95+
8696
Wasserstein Barycenters
8797
-----------------------
8898

@@ -99,8 +109,8 @@ GPU acceleration
99109

100110

101111

102-
How to?
103-
-------
112+
FAQ
113+
---
104114

105115

106116

@@ -128,5 +138,121 @@ How to?
128138
2. **Compute a Wasserstein distance**
129139

130140

131-
132-
141+
References
142+
----------
143+
144+
.. [1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011,
145+
December). `Displacement nterpolation using Lagrangian mass transport
146+
<https://people.csail.mit.edu/sparis/publi/2011/sigasia/Bonneel_11_Displacement_Interpolation.pdf>`__.
147+
In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.
148+
149+
.. [2] Cuturi, M. (2013). `Sinkhorn distances: Lightspeed computation of
150+
optimal transport <https://arxiv.org/pdf/1306.0895.pdf>`__. In Advances
151+
in Neural Information Processing Systems (pp. 2292-2300).
152+
153+
.. [3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G.
154+
(2015). `Iterative Bregman projections for regularized transportation
155+
problems <https://arxiv.org/pdf/1412.5154.pdf>`__. SIAM Journal on
156+
Scientific Computing, 37(2), A1111-A1138.
157+
158+
.. [4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti,
159+
`Supervised planetary unmixing with optimal
160+
transport <https://hal.archives-ouvertes.fr/hal-01377236/document>`__,
161+
Whorkshop on Hyperspectral Image and Signal Processing : Evolution in
162+
Remote Sensing (WHISPERS), 2016.
163+
164+
.. [5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, `Optimal Transport
165+
for Domain Adaptation <https://arxiv.org/pdf/1507.00504.pdf>`__, in IEEE
166+
Transactions on Pattern Analysis and Machine Intelligence , vol.PP,
167+
no.99, pp.1-1
168+
169+
.. [6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014).
170+
`Regularized discrete optimal
171+
transport <https://arxiv.org/pdf/1307.5551.pdf>`__. SIAM Journal on
172+
Imaging Sciences, 7(3), 1853-1882.
173+
174+
.. [7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). `Generalized
175+
conditional gradient: analysis of convergence and
176+
applications <https://arxiv.org/pdf/1510.06567.pdf>`__. arXiv preprint
177+
arXiv:1510.06567.
178+
179+
.. [8] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), `Mapping
180+
estimation for discrete optimal
181+
transport <http://remi.flamary.com/biblio/perrot2016mapping.pdf>`__,
182+
Neural Information Processing Systems (NIPS).
183+
184+
.. [9] Schmitzer, B. (2016). `Stabilized Sparse Scaling Algorithms for
185+
Entropy Regularized Transport
186+
Problems <https://arxiv.org/pdf/1610.06519.pdf>`__. arXiv preprint
187+
arXiv:1610.06519.
188+
189+
.. [10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016).
190+
`Scaling algorithms for unbalanced transport
191+
problems <https://arxiv.org/pdf/1607.05816.pdf>`__. arXiv preprint
192+
arXiv:1607.05816.
193+
194+
.. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016).
195+
`Wasserstein Discriminant
196+
Analysis <https://arxiv.org/pdf/1608.08063.pdf>`__. arXiv preprint
197+
arXiv:1608.08063.
198+
199+
.. [12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016),
200+
`Gromov-Wasserstein averaging of kernel and distance
201+
matrices <http://proceedings.mlr.press/v48/peyre16.html>`__
202+
International Conference on Machine Learning (ICML).
203+
204+
.. [13] Mémoli, Facundo (2011). `Gromov–Wasserstein distances and the
205+
metric approach to object
206+
matching <https://media.adelaide.edu.au/acvt/Publications/2011/2011-Gromov%E2%80%93Wasserstein%20Distances%20and%20the%20Metric%20Approach%20to%20Object%20Matching.pdf>`__.
207+
Foundations of computational mathematics 11.4 : 417-487.
208+
209+
.. [14] Knott, M. and Smith, C. S. (1984).`On the optimal mapping of
210+
distributions <https://link.springer.com/article/10.1007/BF00934745>`__,
211+
Journal of Optimization Theory and Applications Vol 43.
212+
213+
.. [15] Peyré, G., & Cuturi, M. (2018). `Computational Optimal
214+
Transport <https://arxiv.org/pdf/1803.00567.pdf>`__ .
215+
216+
.. [16] Agueh, M., & Carlier, G. (2011). `Barycenters in the Wasserstein
217+
space <https://hal.archives-ouvertes.fr/hal-00637399/document>`__. SIAM
218+
Journal on Mathematical Analysis, 43(2), 904-924.
219+
220+
.. [17] Blondel, M., Seguy, V., & Rolet, A. (2018). `Smooth and Sparse
221+
Optimal Transport <https://arxiv.org/abs/1710.06276>`__. Proceedings of
222+
the Twenty-First International Conference on Artificial Intelligence and
223+
Statistics (AISTATS).
224+
225+
.. [18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) `Stochastic
226+
Optimization for Large-scale Optimal
227+
Transport <https://arxiv.org/abs/1605.08527>`__. Advances in Neural
228+
Information Processing Systems (2016).
229+
230+
.. [19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet,
231+
A.& Blondel, M. `Large-scale Optimal Transport and Mapping
232+
Estimation <https://arxiv.org/pdf/1711.02283.pdf>`__. International
233+
Conference on Learning Representation (2018)
234+
235+
.. [20] Cuturi, M. and Doucet, A. (2014) `Fast Computation of Wasserstein
236+
Barycenters <http://proceedings.mlr.press/v32/cuturi14.html>`__.
237+
International Conference in Machine Learning
238+
239+
.. [21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A.,
240+
Nguyen, A. & Guibas, L. (2015). `Convolutional wasserstein distances:
241+
Efficient optimal transportation on geometric
242+
domains <https://dl.acm.org/citation.cfm?id=2766963>`__. ACM
243+
Transactions on Graphics (TOG), 34(4), 66.
244+
245+
.. [22] J. Altschuler, J.Weed, P. Rigollet, (2017) `Near-linear time
246+
approximation algorithms for optimal transport via Sinkhorn
247+
iteration <https://papers.nips.cc/paper/6792-near-linear-time-approximation-algorithms-for-optimal-transport-via-sinkhorn-iteration.pdf>`__,
248+
Advances in Neural Information Processing Systems (NIPS) 31
249+
250+
.. [23] Aude, G., Peyré, G., Cuturi, M., `Learning Generative Models with
251+
Sinkhorn Divergences <https://arxiv.org/abs/1706.00292>`__, Proceedings
252+
of the Twenty-First International Conference on Artficial Intelligence
253+
and Statistics, (AISTATS) 21, 2018
254+
255+
.. [24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N.
256+
(2019). `Optimal Transport for structured data with application on
257+
graphs <http://proceedings.mlr.press/v97/titouan19a.html>`__ Proceedings
258+
of the 36th International Conference on Machine Learning (ICML).

0 commit comments

Comments
 (0)