@@ -49,30 +49,25 @@ def split_classes(X, y):
4949
5050
5151def fda (X , y , p = 2 , reg = 1e-16 ):
52- """
53- Fisher Discriminant Analysis
54-
52+ """Fisher Discriminant Analysis
5553
5654 Parameters
5755 ----------
58- X : numpy. ndarray (n,d)
59- Training samples
60- y : np. ndarray (n,)
61- labels for training samples
56+ X : ndarray, shape (n, d)
57+ Training samples.
58+ y : ndarray, shape (n,)
59+ Labels for training samples.
6260 p : int, optional
63- size of dimensionnality reduction
61+ Size of dimensionnality reduction.
6462 reg : float, optional
6563 Regularization term >0 (ridge regularization)
6664
67-
6865 Returns
6966 -------
70- P : (d x p) ndarray
67+ P : ndarray, shape (d, p)
7168 Optimal transportation matrix for the given parameters
72- proj : fun
69+ proj : callable
7370 projection function including mean centering
74-
75-
7671 """
7772
7873 mx = np .mean (X )
@@ -130,37 +125,33 @@ def wda(X, y, p=2, reg=1, k=10, solver=None, maxiter=100, verbose=0, P0=None):
130125
131126 Parameters
132127 ----------
133- X : numpy. ndarray (n,d)
134- Training samples
135- y : np. ndarray (n,)
136- labels for training samples
128+ X : ndarray, shape (n, d)
129+ Training samples.
130+ y : ndarray, shape (n,)
131+ Labels for training samples.
137132 p : int, optional
138- size of dimensionnality reduction
133+ Size of dimensionnality reduction.
139134 reg : float, optional
140135 Regularization term >0 (entropic regularization)
141- solver : str, optional
142- None for steepest decsent or 'TrustRegions' for trust regions algorithm
143- else shoudl be a pymanopt.solvers
144- P0 : numpy. ndarray (d,p)
145- Initial starting point for projection
136+ solver : None | str, optional
137+ None for steepest descent or 'TrustRegions' for trust regions algorithm
138+ else should be a pymanopt.solvers
139+ P0 : ndarray, shape (d, p)
140+ Initial starting point for projection.
146141 verbose : int, optional
147- Print information along iterations
148-
149-
142+ Print information along iterations.
150143
151144 Returns
152145 -------
153- P : (d x p) ndarray
146+ P : ndarray, shape (d, p)
154147 Optimal transportation matrix for the given parameters
155- proj : fun
156- projection function including mean centering
157-
148+ proj : callable
149+ Projection function including mean centering.
158150
159151 References
160152 ----------
161-
162- .. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). Wasserstein Discriminant Analysis. arXiv preprint arXiv:1608.08063.
163-
153+ .. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016).
154+ Wasserstein Discriminant Analysis. arXiv preprint arXiv:1608.08063.
164155 """ # noqa
165156
166157 mx = np .mean (X )
0 commit comments