@@ -291,7 +291,7 @@ def sinkhorn_knopp(a, b, M, reg, numItermax=1000,
291291
292292 Returns
293293 -------
294- gamma : ndarray, shape (ns, nt)
294+ gamma : ndarray, shape (ns, nt)
295295 Optimal transportation matrix for the given parameters
296296 log : dict
297297 log dictionary return only if log==True in parameters
@@ -469,7 +469,7 @@ def greenkhorn(a, b, M, reg, numItermax=10000, stopThr=1e-9, verbose=False, log=
469469
470470 Returns
471471 -------
472- gamma : ndarray, shape (ns, nt)
472+ gamma : ndarray, shape (ns, nt)
473473 Optimal transportation matrix for the given parameters
474474 log : dict
475475 log dictionary return only if log==True in parameters
@@ -622,7 +622,7 @@ def sinkhorn_stabilized(a, b, M, reg, numItermax=1000, tau=1e3, stopThr=1e-9,
622622
623623 Returns
624624 -------
625- gamma : ndarray, shape (ns, nt)
625+ gamma : ndarray, shape (ns, nt)
626626 Optimal transportation matrix for the given parameters
627627 log : dict
628628 log dictionary return only if log==True in parameters
@@ -848,7 +848,7 @@ def sinkhorn_epsilon_scaling(a, b, M, reg, numItermax=100, epsilon0=1e4, numInne
848848
849849 Returns
850850 -------
851- gamma : ndarray, shape (ns, nt)
851+ gamma : ndarray, shape (ns, nt)
852852 Optimal transportation matrix for the given parameters
853853 log : dict
854854 log dictionary return only if log==True in parameters
@@ -1340,7 +1340,7 @@ def empirical_sinkhorn(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', numI
13401340
13411341 Returns
13421342 -------
1343- gamma : ndarray, shape (ns, nt)
1343+ gamma : ndarray, shape (ns, nt)
13441344 Regularized optimal transportation matrix for the given parameters
13451345 log : dict
13461346 log dictionary return only if log==True in parameters
@@ -1430,7 +1430,7 @@ def empirical_sinkhorn2(X_s, X_t, reg, a=None, b=None, metric='sqeuclidean', num
14301430
14311431 Returns
14321432 -------
1433- gamma : ndarray, shape (ns, nt)
1433+ gamma : ndarray, shape (ns, nt)
14341434 Regularized optimal transportation matrix for the given parameters
14351435 log : dict
14361436 log dictionary return only if log==True in parameters
@@ -1537,7 +1537,7 @@ def empirical_sinkhorn_divergence(X_s, X_t, reg, a=None, b=None, metric='sqeucli
15371537
15381538 Returns
15391539 -------
1540- gamma : ndarray, shape (ns, nt)
1540+ gamma : ndarray, shape (ns, nt)
15411541 Regularized optimal transportation matrix for the given parameters
15421542 log : dict
15431543 log dictionary return only if log==True in parameters
0 commit comments