@@ -530,13 +530,13 @@ def emd2_1d(x_a, x_b, a=None, b=None, metric='sqeuclidean', p=1., dense=True,
530530
531531
532532def wasserstein_1d (x_a , x_b , a = None , b = None , p = 1. , dense = True , log = False ):
533- """Solves the Wasserstein distance problem between 1d measures and returns
533+ """Solves the p- Wasserstein distance problem between 1d measures and returns
534534 the OT matrix
535535
536536
537537 .. math::
538- \gamma = arg\min_\gamma \left(\sum_i \sum_j \gamma_{ij}
539- |x_a[i] - x_b[j]|^p \r ight)^{1/p}
538+ \gamma = arg\min_\gamma \left( \sum_i \sum_j \gamma_{ij}
539+ |x_a[i] - x_b[j]|^p \\ right)^{1/p}
540540
541541 s.t. \gamma 1 = a,
542542 \gamma^T 1= b,
@@ -617,15 +617,14 @@ def wasserstein_1d(x_a, x_b, a=None, b=None, p=1., dense=True, log=False):
617617 dense = dense , log = log )
618618
619619
620- def wasserstein2_1d (x_a , x_b , a = None , b = None , metric = 'sqeuclidean' , p = 1. ,
621- dense = True , log = False ):
622- """Solves the Wasserstein distance problem between 1d measures and returns
620+ def wasserstein2_1d (x_a , x_b , a = None , b = None , p = 1. , dense = True , log = False ):
621+ """Solves the p-Wasserstein distance problem between 1d measures and returns
623622 the loss
624623
625624
626625 .. math::
627626 \gamma = arg\min_\gamma \left( \sum_i \sum_j \gamma_{ij}
628- |x_a[i] - x_b[j]|^p \r ight)^{1/p}
627+ |x_a[i] - x_b[j]|^p \\ right)^{1/p}
629628
630629 s.t. \gamma 1 = a,
631630 \gamma^T 1= b,
0 commit comments