|
| 1 | +""" |
| 2 | +Tests for Exponential Distribution Family |
| 3 | +
|
| 4 | +This module tests the functionality of the exponential distribution family, |
| 5 | +including parameterizations, characteristics, and sampling. |
| 6 | +""" |
| 7 | + |
| 8 | +__author__ = "Fedor Myznikov" |
| 9 | +__copyright__ = "Copyright (c) 2025 PySATL project" |
| 10 | +__license__ = "SPDX-License-Identifier: MIT" |
| 11 | + |
| 12 | + |
| 13 | +import numpy as np |
| 14 | +import pytest |
| 15 | +from scipy.stats import expon |
| 16 | + |
| 17 | +from pysatl_core.distributions.support import ContinuousSupport |
| 18 | +from pysatl_core.families.configuration import configure_families_register |
| 19 | +from pysatl_core.types import ( |
| 20 | + CharacteristicName, |
| 21 | + ContinuousSupportShape1D, |
| 22 | + FamilyName, |
| 23 | + UnivariateContinuous, |
| 24 | +) |
| 25 | + |
| 26 | +from .base import BaseDistributionTest |
| 27 | + |
| 28 | + |
| 29 | +class TestExponentialFamily(BaseDistributionTest): |
| 30 | + """Test suite for Exponential distribution family.""" |
| 31 | + |
| 32 | + def setup_method(self): |
| 33 | + """Setup before each test method.""" |
| 34 | + registry = configure_families_register() |
| 35 | + self.exponential_family = registry.get(FamilyName.EXPONENTIAL) |
| 36 | + self.exponential_dist_example = self.exponential_family(lambda_=0.5) |
| 37 | + |
| 38 | + def test_family_properties(self): |
| 39 | + """Test basic properties of exponential family.""" |
| 40 | + assert self.exponential_family.name == FamilyName.EXPONENTIAL |
| 41 | + |
| 42 | + # Check parameterizations |
| 43 | + expected_parametrizations = {"rate", "scale"} |
| 44 | + assert set(self.exponential_family.parametrization_names) == expected_parametrizations |
| 45 | + assert self.exponential_family.base_parametrization_name == "rate" |
| 46 | + |
| 47 | + def test_rate_parametrization_creation(self): |
| 48 | + """Test creation of distribution with rate parametrization.""" |
| 49 | + dist = self.exponential_family(lambda_=0.5) |
| 50 | + |
| 51 | + assert dist.family_name == FamilyName.EXPONENTIAL |
| 52 | + assert dist.distribution_type == UnivariateContinuous |
| 53 | + assert dist.parameters == {"lambda_": 0.5} |
| 54 | + assert dist.parametrization_name == "rate" |
| 55 | + |
| 56 | + def test_scale_parametrization_creation(self): |
| 57 | + """Test creation of distribution with scale parametrization.""" |
| 58 | + dist = self.exponential_family(beta=2.0, parametrization_name="scale") |
| 59 | + |
| 60 | + assert dist.parameters == {"beta": 2.0} |
| 61 | + assert dist.parametrization_name == "scale" |
| 62 | + |
| 63 | + def test_parametrization_constraints(self): |
| 64 | + """Test parameter constraints validation.""" |
| 65 | + # lambda_ must be positive |
| 66 | + with pytest.raises(ValueError, match="lambda_ > 0"): |
| 67 | + self.exponential_family(lambda_=-1.0) |
| 68 | + |
| 69 | + # beta must be positive |
| 70 | + with pytest.raises(ValueError, match="beta > 0"): |
| 71 | + self.exponential_family(beta=0.0, parametrization_name="scale") |
| 72 | + |
| 73 | + def test_moments(self): |
| 74 | + """Test moment calculations.""" |
| 75 | + # Mean |
| 76 | + mean_func = self.exponential_dist_example.query_method(CharacteristicName.MEAN) |
| 77 | + assert abs(mean_func(None) - 2.0) < self.CALCULATION_PRECISION |
| 78 | + |
| 79 | + # Variance |
| 80 | + var_func = self.exponential_dist_example.query_method(CharacteristicName.VAR) |
| 81 | + assert abs(var_func(None) - 4.0) < self.CALCULATION_PRECISION |
| 82 | + |
| 83 | + # Skewness |
| 84 | + skew_func = self.exponential_dist_example.query_method(CharacteristicName.SKEW) |
| 85 | + assert abs(skew_func(None) - 2.0) < self.CALCULATION_PRECISION |
| 86 | + |
| 87 | + def test_kurtosis_calculation(self): |
| 88 | + """Test kurtosis calculation with excess parameter.""" |
| 89 | + kurt_func = self.exponential_dist_example.query_method(CharacteristicName.KURT) |
| 90 | + |
| 91 | + raw_kurt = kurt_func(None) |
| 92 | + assert abs(raw_kurt - 9.0) < self.CALCULATION_PRECISION |
| 93 | + |
| 94 | + excess_kurt = kurt_func(None, excess=True) |
| 95 | + assert abs(excess_kurt - 6.0) < self.CALCULATION_PRECISION |
| 96 | + |
| 97 | + raw_kurt_explicit = kurt_func(None, excess=False) |
| 98 | + assert abs(raw_kurt_explicit - 9.0) < self.CALCULATION_PRECISION |
| 99 | + |
| 100 | + @pytest.mark.parametrize( |
| 101 | + "parametrization_name, params, expected_lambda", |
| 102 | + [ |
| 103 | + ("rate", {"lambda_": 0.5}, 0.5), |
| 104 | + ("scale", {"beta": 2.0}, 0.5), # lambda = 1/beta = 0.5 |
| 105 | + ], |
| 106 | + ) |
| 107 | + def test_parametrization_conversions(self, parametrization_name, params, expected_lambda): |
| 108 | + """Test conversions between different parameterizations.""" |
| 109 | + base_params = self.exponential_family.to_base( |
| 110 | + self.exponential_family.get_parametrization(parametrization_name)(**params) |
| 111 | + ) |
| 112 | + |
| 113 | + assert abs(base_params.parameters["lambda_"] - expected_lambda) < self.CALCULATION_PRECISION |
| 114 | + |
| 115 | + def test_analytical_computations_availability(self): |
| 116 | + """Test that analytical computations are available for exponential distribution.""" |
| 117 | + comp = self.exponential_family(lambda_=1.0).analytical_computations |
| 118 | + |
| 119 | + expected_chars = { |
| 120 | + CharacteristicName.PDF, |
| 121 | + CharacteristicName.CDF, |
| 122 | + CharacteristicName.PPF, |
| 123 | + CharacteristicName.CF, |
| 124 | + CharacteristicName.MEAN, |
| 125 | + CharacteristicName.VAR, |
| 126 | + CharacteristicName.SKEW, |
| 127 | + CharacteristicName.KURT, |
| 128 | + } |
| 129 | + assert set(comp.keys()) == expected_chars |
| 130 | + |
| 131 | + def test_pdf_array_input(self): |
| 132 | + """Test PDF calculation with array input.""" |
| 133 | + pdf = self.exponential_dist_example.query_method(CharacteristicName.PDF) |
| 134 | + x_array = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]) |
| 135 | + |
| 136 | + pdf_array = pdf(x_array) |
| 137 | + assert pdf_array.shape == x_array.shape |
| 138 | + scipy_pdf = expon.pdf(x_array, scale=2.0) # scale = 1/lambda = 2.0 |
| 139 | + |
| 140 | + self.assert_arrays_almost_equal(pdf_array, scipy_pdf) |
| 141 | + |
| 142 | + def test_cdf_array_input(self): |
| 143 | + """Test CDF calculation with array input.""" |
| 144 | + cdf = self.exponential_dist_example.query_method(CharacteristicName.CDF) |
| 145 | + x_array = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0]) |
| 146 | + |
| 147 | + cdf_array = cdf(x_array) |
| 148 | + assert cdf_array.shape == x_array.shape |
| 149 | + scipy_cdf = expon.cdf(x_array, scale=2.0) # scale = 1/lambda = 2.0 |
| 150 | + |
| 151 | + self.assert_arrays_almost_equal(cdf_array, scipy_cdf) |
| 152 | + |
| 153 | + def test_ppf_array_input(self): |
| 154 | + """Test PPF calculation with array input.""" |
| 155 | + ppf = self.exponential_dist_example.query_method(CharacteristicName.PPF) |
| 156 | + p_array = np.array([0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99, 0.999]) |
| 157 | + |
| 158 | + ppf_array = ppf(p_array) |
| 159 | + assert ppf_array.shape == p_array.shape |
| 160 | + scipy_ppf = expon.ppf(p_array, scale=2.0) # scale = 1/lambda = 2.0 |
| 161 | + |
| 162 | + self.assert_arrays_almost_equal(ppf_array, scipy_ppf) |
| 163 | + |
| 164 | + def test_characteristic_function_array_input(self): |
| 165 | + """Test characteristic function calculation with array input.""" |
| 166 | + char_func = self.exponential_dist_example.query_method(CharacteristicName.CF) |
| 167 | + t_array = np.array([-2.0, -1.0, 0.0, 1.0, 2.0]) |
| 168 | + |
| 169 | + cf_array = char_func(t_array) |
| 170 | + assert cf_array.shape == t_array.shape |
| 171 | + |
| 172 | + lambda_ = 0.5 |
| 173 | + denominator = lambda_**2 + t_array**2 |
| 174 | + expected_real = lambda_**2 / denominator |
| 175 | + expected_imag = lambda_ * t_array / denominator |
| 176 | + |
| 177 | + expected_real = np.where(np.abs(t_array) < self.CALCULATION_PRECISION, 1.0, expected_real) |
| 178 | + expected_imag = np.where(np.abs(t_array) < self.CALCULATION_PRECISION, 0.0, expected_imag) |
| 179 | + |
| 180 | + expected = expected_real + 1j * expected_imag |
| 181 | + |
| 182 | + self.assert_arrays_almost_equal(cf_array.real, expected.real) |
| 183 | + self.assert_arrays_almost_equal(cf_array.imag, expected.imag) |
| 184 | + |
| 185 | + def test_exponential_support(self): |
| 186 | + """Test that exponential distribution has correct support [0, ∞).""" |
| 187 | + dist = self.exponential_dist_example |
| 188 | + |
| 189 | + assert dist.support is not None |
| 190 | + assert isinstance(dist.support, ContinuousSupport) |
| 191 | + |
| 192 | + assert dist.support.left == 0.0 |
| 193 | + assert dist.support.right == float("inf") |
| 194 | + assert dist.support.left_closed |
| 195 | + assert not dist.support.right_closed |
| 196 | + |
| 197 | + # Test containment |
| 198 | + assert dist.support.contains(0.0) is True |
| 199 | + assert dist.support.contains(1.0) is True |
| 200 | + assert dist.support.contains(-0.1) is False |
| 201 | + assert dist.support.contains(float("inf")) is False |
| 202 | + |
| 203 | + # Test array |
| 204 | + test_points = np.array([-0.1, 0.0, 1.0, 10.0]) |
| 205 | + expected = np.array([False, True, True, True]) |
| 206 | + results = dist.support.contains(test_points) |
| 207 | + np.testing.assert_array_equal(results, expected) |
| 208 | + |
| 209 | + assert dist.support.shape == ContinuousSupportShape1D.RAY_RIGHT |
| 210 | + |
| 211 | + |
| 212 | +class TestExponentialFamilyEdgeCases(BaseDistributionTest): |
| 213 | + """Test edge cases and error conditions for exponential distribution.""" |
| 214 | + |
| 215 | + def setup_method(self): |
| 216 | + """Setup before each test method.""" |
| 217 | + registry = configure_families_register() |
| 218 | + self.exponential_family = registry.get(FamilyName.EXPONENTIAL) |
| 219 | + |
| 220 | + def test_invalid_parameterization(self): |
| 221 | + """Test error for invalid parameterization name.""" |
| 222 | + with pytest.raises(KeyError): |
| 223 | + self.exponential_family.distribution(parametrization_name="invalid_name", lambda_=1.0) |
| 224 | + |
| 225 | + def test_missing_parameters(self): |
| 226 | + """Test error for missing required parameters.""" |
| 227 | + with pytest.raises(TypeError): |
| 228 | + self.exponential_family.distribution() # Missing lambda_ |
| 229 | + |
| 230 | + def test_invalid_probability_ppf(self): |
| 231 | + """Test PPF with invalid probability values.""" |
| 232 | + dist = self.exponential_family(lambda_=1.0) |
| 233 | + ppf = dist.query_method(CharacteristicName.PPF) |
| 234 | + |
| 235 | + # Test boundaries |
| 236 | + assert ppf(0.0) == 0.0 |
| 237 | + assert ppf(1.0) == float("inf") |
| 238 | + |
| 239 | + # Test invalid probabilities |
| 240 | + with pytest.raises(ValueError): |
| 241 | + ppf(-0.1) |
| 242 | + with pytest.raises(ValueError): |
| 243 | + ppf(1.1) |
| 244 | + |
| 245 | + def test_characteristic_function_at_zero(self): |
| 246 | + """Test characteristic function at zero returns 1.""" |
| 247 | + dist = self.exponential_family(lambda_=1.0) |
| 248 | + char_func = dist.query_method(CharacteristicName.CF) |
| 249 | + |
| 250 | + cf_value_zero = char_func(0.0) |
| 251 | + assert abs(cf_value_zero.real - 1.0) < self.CALCULATION_PRECISION |
| 252 | + assert abs(cf_value_zero.imag) < self.CALCULATION_PRECISION |
| 253 | + |
| 254 | + def test_characteristic_function_large_t(self): |
| 255 | + """Test characteristic function with large t.""" |
| 256 | + dist = self.exponential_family(lambda_=1.0) |
| 257 | + char_func = dist.query_method(CharacteristicName.CF) |
| 258 | + |
| 259 | + cf_value_large = char_func(1000.0) |
| 260 | + assert np.iscomplexobj(cf_value_large) |
| 261 | + assert abs(cf_value_large) <= 1.0 |
0 commit comments