You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<a href="https://github.com/ParCoreLab/" class="text-xl font-semibold font-sans visited:text-teal-700">Unified Communication Library</a>
592
+
<a href="https://github.com/ParCoreLab/Uniconn" class="text-xl font-semibold font-sans visited:text-teal-700">Unified Communication Library</a>
593
593
</div>
594
594
<p class="text-lg">We're undertaking the design of an API for a unified communication library to streamline device-to-device communication within the CPU-free model by aiming to optimize communication efficiency across diverse devices. We are also investigating how the available communication libraries for a system perform under different
595
595
message sizes and communication patterns. Thus, we ex-
596
596
tensively benchmark current communication methods for
597
597
single-process, multi-threaded, and multi-process codes. More details about the project will be available soon. The related paper is under preparation.</p>
598
+
599
+
<p>
600
+
All the artifacts and benchmarks can be found <a href="https://github.com/ParCoreLab/Uniconn" class="text-xl font-semibold font-sans visited:text-teal-700">here.</a>
<divclass="card text-lg"> Doǧan Sağbili, Sinan Ekmekçibaşı, Khaled Z. Ibrahim, Tan Nguyen, Didem Unat (2025) UNICONN: A Uniform High-Level Communication
670
+
Library for Portable Multi-GPU Programming
671
+
<ahref="https://docs.google.com/presentation/d/1Tw4Yl8SLUjSDQwgHEITXthKg_KbjhVUZ3b9he2QTlj4/edit?usp=sharing">(presentation)</a>. In Cluster ’25: Proceedings of the IEEE International Conference on Cluster Computing (IEEE Cluster 2025). <aclass="italic"downloadhref="./assets/preprint-pdfs/Cluster_2025_______uniconn_paper__ieee_.pdf">preprint pdf</a>
672
+
</div>
673
+
666
674
<divclass="card text-lg"> Ilyas Turimbetov, Mohamed Wahib, Didem Unat (2025) <ahref="https://dl.acm.org/doi/10.1145/3721145.3730426">A Device-Side Execution Model for Multi-GPU Task
667
675
Graphs</a> <ahref="https://docs.google.com/presentation/d/1po87zQeUQb5l12AXB5RMSuod-o8yPZw32kEBtczr-v0/edit?usp=sharing">(presentation)</a>. In ICS ’25: Proceedings of the 39th ACM International Conference on Supercomputing. <aclass="italic"downloadhref="./assets/preprint-pdfs/ICS25______CPU_free_Task_Graph_Execution.pdf">preprint pdf</a>
668
676
</div>
677
+
669
678
<divclass="card text-lg"> Javid Baydamirli, Tal Ben Nun, Didem Unat (2024) <ahref="https://sc24.supercomputing.org/proceedings/workshops/workshop_pages/ws_p3hpc108.html">Autonomous Execution for Multi-GPU Systems:
670
679
Compiler Support</a> <ahref="https://sc24.conference-program.com/presentation/?id=ws_p3hpc108&sess=sess751">(presentation)</a>. In the 2024 International Workshop on Performance, Portability, and Productivity in HPC. <aclass="italic"downloadhref="./assets/preprint-pdfs/sc24-workshop-autonomous-execution-for-multi-gpu-systems-compiler-support.pdf">preprint pdf</a>
0 commit comments