Skip to content

Update Part 2 tutorial to include Dropout layer in Custom model example. #35

@yanndupis

Description

@yanndupis

In Part 2 tutorial, for custom when including a Dropout layer in the custom model (tf.keras.models.Model subclassing), we were getting the following error when sending the model to a worker ( model gets saved with tf.keras.models.save_model during the process), we were getting the following error in #33 :

ValueError: Could not find matching function to call loaded from the SavedModel. Got:
  Positional arguments (2 total):
    * Tensor("inputs:0", shape=(None, 28, 28), dtype=float32)
    * Tensor("training:0", shape=(), dtype=bool)
  Keyword arguments: {}

Expected these arguments to match one of the following 4 option(s):

Option 1:
  Positional arguments (2 total):
    * TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='input_1')
    * False
  Keyword arguments: {}

Option 2:
  Positional arguments (2 total):
    * TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='input_1')
    * True
  Keyword arguments: {}

Option 3:
  Positional arguments (2 total):
    * TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='inputs')
    * False
  Keyword arguments: {}

Option 4:
  Positional arguments (2 total):
    * TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='inputs')
    * True
  Keyword arguments: {}

There was probably just a problem with the model definition. Would be great to have this custom model with a dropout layer working so it mirror perfectly the Sequential example.

Metadata

Metadata

Assignees

Labels

Good first issue 🎓Perfect for beginners, welcome to OpenMined!

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions