From 937b30413df6b4613d8ff582332938d4fbf252cc Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Mon, 15 Dec 2025 23:47:40 -0800 Subject: [PATCH 01/41] update response dataset unit test as example Signed-off-by: Yuki Huang --- .../data/datasets/test_response_dataset.py | 79 ++++++------------- 1 file changed, 25 insertions(+), 54 deletions(-) diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 22bc7168fe..2d6074380a 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -18,15 +18,11 @@ import pytest from transformers import AutoTokenizer -from nemo_rl.data.chat_templates import COMMON_CHAT_TEMPLATES +from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data.datasets import load_response_dataset -@pytest.fixture -def sample_data(request): - input_key = request.param[0] - output_key = request.param[1] - +def create_sample_data(input_key, output_key): train_data = [ {input_key: "Hello", output_key: "Hi there!"}, {input_key: "How are you?", output_key: "I'm good, thanks!"}, @@ -52,64 +48,42 @@ def sample_data(request): return train_path, val_path -@pytest.mark.parametrize("sample_data", [("input", "output")], indirect=True) -def test_dataset_initialization(sample_data): - # load the dataset - train_path, val_path = sample_data - data_config = { - "dataset_name": "ResponseDataset", - "train_data_path": train_path, - "val_data_path": val_path, - } - dataset = load_response_dataset(data_config) - - assert dataset.input_key == "input" - assert dataset.output_key == "output" - assert "train" in dataset.formatted_ds - assert "validation" in dataset.formatted_ds +@pytest.fixture(scope="function") +def tokenizer(): + """Initialize tokenizer for the test model.""" + tokenizer = get_tokenizer({"name": "Qwen/Qwen3-0.6B"}) + return tokenizer -@pytest.mark.parametrize("sample_data", [("question", "answer")], indirect=True) -def test_custom_keys(sample_data): +@pytest.mark.parametrize( + "input_key,output_key", [("input", "output"), ("question", "answer")] +) +def test_response_dataset(input_key, output_key, tokenizer): # load the dataset - train_path, val_path = sample_data + train_path, val_path = create_sample_data(input_key, output_key) data_config = { "dataset_name": "ResponseDataset", "train_data_path": train_path, "val_data_path": val_path, - "input_key": "question", - "output_key": "answer", + "input_key": input_key, + "output_key": output_key, } dataset = load_response_dataset(data_config) - assert dataset.input_key == "question" - assert dataset.output_key == "answer" - - -@pytest.mark.hf_gated -@pytest.mark.parametrize("sample_data", [("question", "answer")], indirect=True) -def test_message_formatting(sample_data): - # load the dataset - train_path, val_path = sample_data - data_config = { - "dataset_name": "ResponseDataset", - "train_data_path": train_path, - "val_data_path": val_path, - "input_key": "question", - "output_key": "answer", - } - dataset = load_response_dataset(data_config) + # check the input and output keys + assert dataset.input_key == input_key + assert dataset.output_key == output_key + # check the first example first_example = dataset.formatted_ds["train"][0] - assert first_example["messages"][0]["role"] == "user" - assert first_example["messages"][0]["content"] == "Hello" - assert first_example["messages"][1]["role"] == "assistant" - assert first_example["messages"][1]["content"] == "Hi there!" - - chat_template = COMMON_CHAT_TEMPLATES.passthrough_prompt_response - tokenizer = AutoTokenizer.from_pretrained("Meta-Llama/Meta-Llama-3-8B-Instruct") + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert first_example["task_name"] == "ResponseDataset" + # check the combined message + chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" combined_message = tokenizer.apply_chat_template( first_example["messages"], chat_template=chat_template, @@ -117,10 +91,7 @@ def test_message_formatting(sample_data): add_generation_prompt=False, add_special_tokens=False, ) - - assert combined_message == "".join( - message["content"] for message in first_example["messages"] - ) + assert combined_message == " Question: Hello Answer: Hi there!" @pytest.mark.hf_gated From db1db8ae5696b04593ab6c3e34f927fe341e9269 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Tue, 16 Dec 2025 06:04:06 -0800 Subject: [PATCH 02/41] split train and val at run_grpo and response_dataset Signed-off-by: Yuki Huang --- examples/configs/grpo_math_1B.yaml | 14 +++- examples/run_grpo.py | 64 +++++++++++------- nemo_rl/data/datasets/__init__.py | 6 +- .../datasets/response_datasets/__init__.py | 19 +----- .../response_datasets/response_dataset.py | 65 +++++++++---------- nemo_rl/data/datasets/utils.py | 13 ++++ .../data/datasets/test_response_dataset.py | 31 +++------ 7 files changed, 111 insertions(+), 101 deletions(-) diff --git a/examples/configs/grpo_math_1B.yaml b/examples/configs/grpo_math_1B.yaml index 52de51905c..dd4e570629 100644 --- a/examples/configs/grpo_math_1B.yaml +++ b/examples/configs/grpo_math_1B.yaml @@ -258,13 +258,21 @@ policy: data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len - prompt_file: "examples/prompts/cot.txt" - system_prompt_file: null shuffle: true num_workers: 1 + # dataset + prompt_file: "examples/prompts/cot.txt" + system_prompt_file: null processor: "math_hf_data_processor" env_name: "math" - dataset_name: "OpenMathInstruct-2" + train: + dataset_name: ResponseDataset + data_path: nvidia/OpenMathInstruct-2 + input_key: "problem" + output_key: "expected_answer" + split: "train_1M" + split_validation_size: 0.05 # use 5% of the training data as validation data + validation: null # no external validation data # You can use custom response datasets for training and validation. For example: # data: # dataset_name: ResponseDataset diff --git a/examples/run_grpo.py b/examples/run_grpo.py index cd9d47f628..837c3e5672 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -15,21 +15,23 @@ import argparse import os import pprint -from collections import defaultdict from typing import Any, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import PreTrainedTokenizerBase from nemo_rl.algorithms.grpo import MasterConfig, grpo_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + load_response_dataset, + update_single_dataset_config, +) from nemo_rl.data.interfaces import ( - TaskDataProcessFnCallable, TaskDataSpec, ) -from nemo_rl.data.processors import math_hf_data_processor from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface from nemo_rl.environments.utils import create_env @@ -80,41 +82,55 @@ def setup_data( prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) - # define default task data processor - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (default_task_spec, math_hf_data_processor)) - ) - # load dataset - data: Any = load_response_dataset(data_config, seed) - task_spec = data.task_spec - task_name = data.task_name - assert hasattr(data, "processor"), "Dataset must have a processor attribute" - task_data_processors[task_name] = (task_spec, data.processor) + # setup train dataset + update_single_dataset_config(data_config["train"], data_config) + data = load_response_dataset(data_config["train"], seed) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: env} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, default_task_spec, # default task data spec to process any values not specified in the task-specific specs task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset + if data_config["train"]["split_validation_size"] > 0: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if data_config["validation"] is not None: + update_single_dataset_config(data_config["validation"], data_config) + val_data = load_response_dataset(data_config["validation"], seed) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = env + + val_dataset = None + if len(val_data_list) > 0: + val_dataset = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + val_dataset, tokenizer, default_task_spec, - task_data_processors, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: env) - task_to_env[task_name] = env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: diff --git a/nemo_rl/data/datasets/__init__.py b/nemo_rl/data/datasets/__init__.py index f859705dba..dc5767b5fe 100644 --- a/nemo_rl/data/datasets/__init__.py +++ b/nemo_rl/data/datasets/__init__.py @@ -15,7 +15,10 @@ from nemo_rl.data.datasets.preference_datasets import load_preference_dataset from nemo_rl.data.datasets.processed_dataset import AllTaskProcessedDataset from nemo_rl.data.datasets.response_datasets import load_response_dataset -from nemo_rl.data.datasets.utils import assert_no_double_bos +from nemo_rl.data.datasets.utils import ( + assert_no_double_bos, + update_single_dataset_config, +) __all__ = [ "AllTaskProcessedDataset", @@ -23,4 +26,5 @@ "load_preference_dataset", "load_response_dataset", "assert_no_double_bos", + "update_single_dataset_config", ] diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index a259b8a152..c402a5717e 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -107,24 +107,7 @@ def load_response_dataset(data_config, seed: int = 42): base_dataset: Any = HelpSteer3Dataset() # fall back to load from JSON file elif dataset_name == "ResponseDataset": - if "train_data_path" not in data_config: - raise ValueError( - "train_data_path is required when dataset_name is not one of the built-ins." - ) - extra_kwargs = get_extra_kwargs( - data_config, - [ - "val_data_path", - "input_key", - "output_key", - "train_split", - "val_split", - ], - ) - base_dataset = ResponseDataset( - train_data_path=data_config["train_data_path"], - **extra_kwargs, - ) + base_dataset = ResponseDataset(**data_config, seed=seed) else: raise ValueError( f"Unsupported {dataset_name=}. " diff --git a/nemo_rl/data/datasets/response_datasets/response_dataset.py b/nemo_rl/data/datasets/response_datasets/response_dataset.py index 15af21206e..9e6df518c5 100644 --- a/nemo_rl/data/datasets/response_datasets/response_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/response_dataset.py @@ -29,56 +29,55 @@ class ResponseDataset(RawDataset): } Args: - train_data_path: Path to the JSON file containing training data - val_data_path: Path to the JSON file containing validation data + data_path: Path to the JSON file containing training data input_key: Key for the input text output_key: Key for the output text - train_split: Split name for the training data, used for HuggingFace datasets, default is None - val_split: Split name for the validation data, used for HuggingFace datasets, default is None + split: Split name for the training data, used for HuggingFace datasets, default is None + split_validation_size: Size of the validation data, default is 0 """ def __init__( self, - train_data_path: str, - val_data_path: Optional[str] = None, + data_path: str, input_key: str = "input", output_key: str = "output", - train_split: Optional[str] = None, - val_split: Optional[str] = None, + split: Optional[str] = None, + split_validation_size: int = 0, + seed: int = 42, + **kwargs, ): self.input_key = input_key self.output_key = output_key - self.task_name = "ResponseDataset" - # load from json file or huggingface - train_ds = load_dataset_from_path(train_data_path, train_split) - if val_data_path: - val_ds = load_dataset_from_path(val_data_path, val_split) - else: - val_ds = None + self.task_name = data_path.split("/")[-1].split(".")[0] + + # load from local or huggingface + self.dataset = load_dataset_from_path(data_path, split) - # Only apply add_messages_key if 'messages' column doesn't exist - if "messages" not in train_ds.column_names: - train_ds = train_ds.map( - self.add_messages_key, fn_kwargs={"task_name": self.task_name} + # format the dataset + if "messages" not in self.dataset.column_names: + self.dataset = self.dataset.map( + self.add_messages_key, + remove_columns=self.dataset.column_names, ) - if val_ds is not None and "messages" not in val_ds.column_names: - val_ds = val_ds.map( - self.add_messages_key, fn_kwargs={"task_name": self.task_name} + else: + self.dataset = self.dataset.add_column( + "task_name", [self.task_name] * len(self.dataset) ) - # store the formatted dataset - self.formatted_ds = { - "train": train_ds, - "validation": val_ds, - } + # used when current dataset both for training and validation + self.val_dataset = None + if split_validation_size > 0: + split_dataset = self.dataset.train_test_split( + test_size=split_validation_size, seed=seed + ) + self.dataset = split_dataset["train"] + self.val_dataset = split_dataset["test"] - def add_messages_key( - self, example: dict[str, Any], task_name: str = "ResponseDataset" - ) -> dict[str, str | list[dict[str, Any]]]: + def add_messages_key(self, data: dict[str, Any]) -> dict[str, Any]: return { "messages": [ - {"role": "user", "content": example[self.input_key]}, - {"role": "assistant", "content": example[self.output_key]}, + {"role": "user", "content": data[self.input_key]}, + {"role": "assistant", "content": data[self.output_key]}, ], - "task_name": task_name, + "task_name": self.task_name, } diff --git a/nemo_rl/data/datasets/utils.py b/nemo_rl/data/datasets/utils.py index eb78becc45..4db03ac527 100644 --- a/nemo_rl/data/datasets/utils.py +++ b/nemo_rl/data/datasets/utils.py @@ -106,3 +106,16 @@ def get_extra_kwargs(data_config: dict, keys: list[str]) -> dict: if key in data_config: extra_kwargs[key] = data_config[key] return extra_kwargs + + +def update_single_dataset_config(data_config: dict, default_data_config: dict) -> dict: + """Fill the single dataset config with default dataset config.""" + fill_keys = [ + "prompt_file", + "system_prompt_file", + "processor", + "env_name", + ] + for key in fill_keys: + if key not in data_config and key in default_data_config: + data_config[key] = default_data_config[key] diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 2d6074380a..a1c728e482 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -23,29 +23,17 @@ def create_sample_data(input_key, output_key): - train_data = [ + data = [ {input_key: "Hello", output_key: "Hi there!"}, {input_key: "How are you?", output_key: "I'm good, thanks!"}, ] - val_data = [ - {input_key: "What's up?", output_key: "Not much!"}, - {input_key: "Bye", output_key: "Goodbye!"}, - ] # Create temporary files for train and validation data - with tempfile.NamedTemporaryFile( - mode="w", suffix=".json", delete=False - ) as train_file: - json.dump(train_data, train_file) - train_path = train_file.name - - with tempfile.NamedTemporaryFile( - mode="w", suffix=".json", delete=False - ) as val_file: - json.dump(val_data, val_file) - val_path = val_file.name + with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f: + json.dump(data, f) + data_path = f.name - return train_path, val_path + return data_path @pytest.fixture(scope="function") @@ -60,11 +48,10 @@ def tokenizer(): ) def test_response_dataset(input_key, output_key, tokenizer): # load the dataset - train_path, val_path = create_sample_data(input_key, output_key) + data_path = create_sample_data(input_key, output_key) data_config = { "dataset_name": "ResponseDataset", - "train_data_path": train_path, - "val_data_path": val_path, + "data_path": data_path, "input_key": input_key, "output_key": output_key, } @@ -75,12 +62,12 @@ def test_response_dataset(input_key, output_key, tokenizer): assert dataset.output_key == output_key # check the first example - first_example = dataset.formatted_ds["train"][0] + first_example = dataset.dataset[0] # only contains messages and task_name assert len(first_example.keys()) == 2 assert "messages" in first_example - assert first_example["task_name"] == "ResponseDataset" + assert "task_name" in first_example # check the combined message chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" From 11959ff34f064ac99d1d3870ad29d3d8c971b5f2 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Tue, 16 Dec 2025 07:49:39 -0800 Subject: [PATCH 03/41] update OpenMathInstruct2Dataset Signed-off-by: Yuki Huang --- examples/configs/grpo_math_1B.yaml | 23 ++-- .../datasets/response_datasets/__init__.py | 10 +- .../response_datasets/openmathinstruct2.py | 101 ++++++------------ .../response_datasets/response_dataset.py | 4 +- .../data/datasets/test_response_dataset.py | 45 ++++++++ 5 files changed, 95 insertions(+), 88 deletions(-) diff --git a/examples/configs/grpo_math_1B.yaml b/examples/configs/grpo_math_1B.yaml index dd4e570629..f66879f2ed 100644 --- a/examples/configs/grpo_math_1B.yaml +++ b/examples/configs/grpo_math_1B.yaml @@ -260,28 +260,29 @@ data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len shuffle: true num_workers: 1 + # dataset prompt_file: "examples/prompts/cot.txt" system_prompt_file: null processor: "math_hf_data_processor" env_name: "math" train: - dataset_name: ResponseDataset - data_path: nvidia/OpenMathInstruct-2 - input_key: "problem" - output_key: "expected_answer" - split: "train_1M" + dataset_name: OpenMathInstruct-2 split_validation_size: 0.05 # use 5% of the training data as validation data - validation: null # no external validation data + validation: null # You can use custom response datasets for training and validation. For example: - # data: + # train: + # dataset_name: ResponseDataset + # data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) + # input_key: , default is "input" + # output_key: , default is "output" + # split: , default is None # used for HuggingFace datasets + # validation: # dataset_name: ResponseDataset - # train_data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - # val_data_path: + # data_path: # input_key: , default is "input" # output_key: , default is "output" - # train_split: , default is None # used for HuggingFace datasets - # val_split: , default is None # used for HuggingFace datasets + # split: , default is None # used for HuggingFace datasets # See https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#datasets for more details. env: diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index c402a5717e..f85771b996 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -47,12 +47,8 @@ def load_response_dataset(data_config, seed: int = 42): elif dataset_name == "squad": base_dataset = SquadDataset() elif dataset_name == "openmathinstruct2": - base_dataset = OpenMathInstruct2Dataset( - split=data_config["split"], - output_key=data_config["output_key"], - prompt_file=data_config["prompt_file"], - seed=seed, - ) + # TODO: need test after SFT updated + base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) elif dataset_name == "clevr_cogent": base_dataset = CLEVRCoGenTDataset( split=data_config["split"], @@ -71,7 +67,7 @@ def load_response_dataset(data_config, seed: int = 42): # for rl training elif dataset_name == "OpenMathInstruct-2": print("Loading nvidia/OpenMathInstruct2Dataset for training and validation") - base_dataset: Any = OpenMathInstruct2Dataset(seed=seed) + base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) elif dataset_name == "DeepScaler": print( "Loading agentica-org/DeepScaleR-Preview-Dataset for training and validation" diff --git a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py index f2bb228427..88ff9980ea 100644 --- a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py +++ b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py @@ -12,78 +12,21 @@ # See the License for the specific language governing permissions and # limitations under the License. +from typing import Any -from typing import Any, Optional - -from datasets import Dataset, load_dataset +from datasets import load_dataset from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_math( - data: dict[str, str | float | int], - output_key: str = "expected_answer", - task_name: str = "OpenMathInstruct-2", -) -> dict[str, list[Any] | str]: - return { - "messages": [ - { - "role": "user", - "content": data["problem"], - }, - { - "role": "assistant", - "content": data[output_key], - }, - ], - "task_name": task_name, - } - - -def prepare_openinstructmath2_dataset( - split: str = "train_1M", - seed: int = 42, - test_size: float = 0.05, - output_key: str = "expected_answer", - task_name: str = "OpenMathInstruct-2", -) -> dict[str, Dataset | None]: - """Load and split the OpenMathInstruct-2 dataset into train and validation sets using HF's train_test_split.""" - print( - "WARNING: For reproducible experiments, preprocess the dataset once and define your own HfDataset subclass that directly uses the preprocessed datasets." - ) - - # Load the original dataset - original_ds = load_dataset("nvidia/OpenMathInstruct-2", split=split) - - # Split into train and validation sets using HF's train_test_split - split_ds = original_ds.train_test_split(test_size=test_size, seed=seed) - - # Format the examples, removing original columns - train_formatted = split_ds["train"].map( - format_math, - remove_columns=split_ds["train"].column_names, - fn_kwargs={"output_key": output_key, "task_name": task_name}, - ) - val_formatted = split_ds["test"].map( - format_math, - remove_columns=split_ds["test"].column_names, - fn_kwargs={"output_key": output_key, "task_name": task_name}, - ) - - return { - "train": train_formatted, - "validation": val_formatted, - } - - class OpenMathInstruct2Dataset(RawDataset): def __init__( self, + output_key: str = "expected_answer", split: str = "train_1M", + split_validation_size: float = 0.05, seed: int = 42, - test_size: float = 0.05, - output_key: str = "expected_answer", - prompt_file: Optional[str] = None, + **kwargs, ): """Initialize the OpenMathInstruct2 dataset with train/validation split. @@ -97,11 +40,33 @@ def __init__( f"Invalid split: {split}. Please use 'train', 'train_1M', 'train_2M', or 'train_5M'." ) + self.input_key = "problem" + self.output_key = output_key self.task_name = "OpenMathInstruct-2" - self.formatted_ds = prepare_openinstructmath2_dataset( - split=split, - seed=seed, - test_size=test_size, - output_key=output_key, - task_name=self.task_name, + + # load from local or huggingface + self.dataset = load_dataset("nvidia/OpenMathInstruct-2", split=split) + + # format the dataset + self.dataset = self.dataset.map( + self.add_messages_key, + remove_columns=self.dataset.column_names, ) + + # use only when current dataset is used for both training and validation + self.val_dataset = None + if split_validation_size > 0: + split_dataset = self.dataset.train_test_split( + test_size=split_validation_size, seed=seed + ) + self.dataset = split_dataset["train"] + self.val_dataset = split_dataset["test"] + + def add_messages_key(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + {"role": "user", "content": data[self.input_key]}, + {"role": "assistant", "content": data[self.output_key]}, + ], + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/response_dataset.py b/nemo_rl/data/datasets/response_datasets/response_dataset.py index 9e6df518c5..a55a01625b 100644 --- a/nemo_rl/data/datasets/response_datasets/response_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/response_dataset.py @@ -42,7 +42,7 @@ def __init__( input_key: str = "input", output_key: str = "output", split: Optional[str] = None, - split_validation_size: int = 0, + split_validation_size: float = 0, seed: int = 42, **kwargs, ): @@ -64,7 +64,7 @@ def __init__( "task_name", [self.task_name] * len(self.dataset) ) - # used when current dataset both for training and validation + # use only when current dataset is used for both training and validation self.val_dataset = None if split_validation_size > 0: split_dataset = self.dataset.train_test_split( diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index a1c728e482..2ebd225d12 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -81,6 +81,51 @@ def test_response_dataset(input_key, output_key, tokenizer): assert combined_message == " Question: Hello Answer: Hi there!" +@pytest.mark.parametrize("output_key", ["expected_answer", "generated_solution"]) +def test_openmathinstruct2_dataset(output_key, tokenizer): + # load the dataset + data_config = { + "dataset_name": "OpenMathInstruct-2", + "output_key": output_key, + "split_validation_size": 0.05, + } + dataset = load_response_dataset(data_config) + + # check the first example + first_example = dataset.dataset[0] + first_val_example = dataset.val_dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + assert first_example["messages"][0]["content"][:20] == "An octahedron has ei" + if output_key == "expected_answer": + assert first_example["messages"][1]["content"][:20] == "\\frac{8\\sqrt{3}}{3}" + elif output_key == "generated_solution": + assert first_example["messages"][1]["content"][:20] == "Let's denote the poi" + + # check the combined message + messages = [first_example["messages"], first_val_example["messages"]] + chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" + combined_message = tokenizer.apply_chat_template( + messages, + chat_template=chat_template, + tokenize=False, + add_generation_prompt=False, + add_special_tokens=False, + ) + + for i in range(2): + assert combined_message[i] == ( + " Question: " + + messages[i][0]["content"] + + " Answer: " + + messages[i][1]["content"] + ) + + @pytest.mark.hf_gated @pytest.mark.skip(reason="dataset download is flaky") def test_squad_dataset(): From 1b11f32af7050adbb1bbb2268ff0ff273d055ef2 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Tue, 16 Dec 2025 08:55:20 -0800 Subject: [PATCH 04/41] update clevr Signed-off-by: Yuki Huang --- examples/configs/vlm_grpo_3B.yaml | 13 ++-- examples/configs/vlm_grpo_3B_megatron.yaml | 13 ++-- .../datasets/response_datasets/__init__.py | 3 +- .../data/datasets/response_datasets/clevr.py | 64 ++++++------------- .../response_datasets/openmathinstruct2.py | 4 +- .../response_datasets/response_dataset.py | 5 +- 6 files changed, 43 insertions(+), 59 deletions(-) diff --git a/examples/configs/vlm_grpo_3B.yaml b/examples/configs/vlm_grpo_3B.yaml index ec2f8531c0..05ad8cf552 100644 --- a/examples/configs/vlm_grpo_3B.yaml +++ b/examples/configs/vlm_grpo_3B.yaml @@ -231,13 +231,18 @@ policy: data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len + shuffle: true + num_workers: 1 + # dataset prompt_file: "examples/prompts/clevr_cogent_cot.txt" system_prompt_file: null - dataset_name: "clevr-cogent" env_name: "clevr-cogent" - split: "trainA" - shuffle: true - num_workers: 1 + train: + dataset_name: clevr-cogent + split: train + validation: + dataset_name: clevr-cogent + split: valA env: clevr-cogent: diff --git a/examples/configs/vlm_grpo_3B_megatron.yaml b/examples/configs/vlm_grpo_3B_megatron.yaml index 7ae6f38c67..4e86fe556d 100644 --- a/examples/configs/vlm_grpo_3B_megatron.yaml +++ b/examples/configs/vlm_grpo_3B_megatron.yaml @@ -183,13 +183,18 @@ policy: data_parallel_sharding_strategy: optim_grads_params data: max_input_seq_length: ${policy.max_total_sequence_length} + shuffle: true + num_workers: 1 + # dataset prompt_file: examples/prompts/clevr_cogent_cot.txt system_prompt_file: null - dataset_name: clevr-cogent env_name: "clevr-cogent" - split: trainA - shuffle: true - num_workers: 1 + train: + dataset_name: clevr-cogent + split: train + validation: + dataset_name: clevr-cogent + split: valA env: clevr-cogent: num_workers: 8 diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index f85771b996..20f3714af7 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -47,7 +47,7 @@ def load_response_dataset(data_config, seed: int = 42): elif dataset_name == "squad": base_dataset = SquadDataset() elif dataset_name == "openmathinstruct2": - # TODO: need test after SFT updated + # TODO: test after SFT updated base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) elif dataset_name == "clevr_cogent": base_dataset = CLEVRCoGenTDataset( @@ -79,6 +79,7 @@ def load_response_dataset(data_config, seed: int = 42): ) base_dataset: Any = DAPOMath17KDataset(seed=seed) # for vlm rl training + # TODO: test after GRPO-VLM updated elif dataset_name == "clevr-cogent": base_dataset: Any = CLEVRCoGenTDataset( split=data_config["split"], diff --git a/nemo_rl/data/datasets/response_datasets/clevr.py b/nemo_rl/data/datasets/response_datasets/clevr.py index 30bf67b47f..74a0e106b2 100644 --- a/nemo_rl/data/datasets/response_datasets/clevr.py +++ b/nemo_rl/data/datasets/response_datasets/clevr.py @@ -12,7 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any, Optional +from typing import Any from datasets import load_dataset @@ -57,63 +57,35 @@ def format_clevr_cogent_dataset( "content": assistant_content, }, ], - "task_name": "clevr-cogent", + "task_name": example["task_name"], } return ret -# contain different variants of the CLEVR dataset -def prepare_clevr_cogent_dataset( - split: str = "trainA", task_name: Optional[str] = None -): - if task_name is None: - task_name = "clevr-cogent" - - if split == "trainA": - tr_dataset = load_dataset("MMInstruction/Clevr_CoGenT_TrainA_70K_Complex")[ - "train" - ] - val_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValA")["train"] - elif split == "trainB": - tr_dataset = load_dataset("MMInstruction/Clevr_CoGenT_TrainA_70K_Complex")[ - "train" - ] - val_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValB")["train"] - elif split == "valA": - tr_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValA")["train"] - val_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValA")["train"] - elif split == "valB": - tr_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValB")["train"] - val_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValB")["train"] - - # format - disable features to avoid schema conflicts - tr_dataset = tr_dataset.add_column("task_name", [task_name] * len(tr_dataset)) - val_dataset = val_dataset.add_column("task_name", [task_name] * len(val_dataset)) - - return { - "train": tr_dataset, - "validation": val_dataset, - } - - class CLEVRCoGenTDataset(RawDataset): - def __init__( - self, - split: str = "trainA", - prompt_file: Optional[str] = None, - ): + def __init__(self, split: str = "train"): """Simple wrapper around the CLEVR-CoGenT dataset. Args: split: The split of the dataset to use. - prompt_file: The file containing the prompt for the dataset. """ - if split not in ["trainA", "trainB", "valA", "valB"]: + # train, valA, and valB are supported splits. + SPLIT_TO_HF_NAME = { + "train": "MMInstruction/Clevr_CoGenT_TrainA_70K_Complex", + "valA": "MMInstruction/Clevr_CoGenT_ValA", + "valB": "MMInstruction/Clevr_CoGenT_ValB", + } + if split not in SPLIT_TO_HF_NAME: raise ValueError( - f"Invalid split: {split}. Please use 'trainA', 'trainB', 'valA', or 'valB'." + f"Invalid split: {split}. Please use 'train', 'valA', or 'valB'." ) + self.task_name = "clevr-cogent" - self.formatted_ds = prepare_clevr_cogent_dataset( - split=split, task_name=self.task_name + # this dataset will be formatted during training using `format_clevr_cogent_dataset`` + self.dataset = load_dataset(SPLIT_TO_HF_NAME[split])["train"] + + # format - disable features to avoid schema conflicts + self.dataset = self.dataset.add_column( + "task_name", [self.task_name] * len(self.dataset) ) diff --git a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py index 88ff9980ea..666bc1151f 100644 --- a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py +++ b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py @@ -49,7 +49,7 @@ def __init__( # format the dataset self.dataset = self.dataset.map( - self.add_messages_key, + self.format_data, remove_columns=self.dataset.column_names, ) @@ -62,7 +62,7 @@ def __init__( self.dataset = split_dataset["train"] self.val_dataset = split_dataset["test"] - def add_messages_key(self, data: dict[str, Any]) -> dict[str, Any]: + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: return { "messages": [ {"role": "user", "content": data[self.input_key]}, diff --git a/nemo_rl/data/datasets/response_datasets/response_dataset.py b/nemo_rl/data/datasets/response_datasets/response_dataset.py index a55a01625b..b4666bac00 100644 --- a/nemo_rl/data/datasets/response_datasets/response_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/response_dataset.py @@ -34,6 +34,7 @@ class ResponseDataset(RawDataset): output_key: Key for the output text split: Split name for the training data, used for HuggingFace datasets, default is None split_validation_size: Size of the validation data, default is 0 + seed: Seed for training/validation split when split_validation_size > 0, default is 42 """ def __init__( @@ -56,7 +57,7 @@ def __init__( # format the dataset if "messages" not in self.dataset.column_names: self.dataset = self.dataset.map( - self.add_messages_key, + self.format_data, remove_columns=self.dataset.column_names, ) else: @@ -73,7 +74,7 @@ def __init__( self.dataset = split_dataset["train"] self.val_dataset = split_dataset["test"] - def add_messages_key(self, data: dict[str, Any]) -> dict[str, Any]: + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: return { "messages": [ {"role": "user", "content": data[self.input_key]}, From 1081ea4a8dba66df77f781b224d1fbc6e70f8aaf Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Tue, 16 Dec 2025 22:41:34 -0800 Subject: [PATCH 05/41] update vlm datasets Signed-off-by: Yuki Huang --- .../datasets/response_datasets/__init__.py | 32 ++--- .../data/datasets/response_datasets/clevr.py | 9 +- .../datasets/response_datasets/geometry3k.py | 50 ++----- .../datasets/response_datasets/refcoco.py | 127 +++++++----------- .../data/datasets/test_response_dataset.py | 40 ++++++ 5 files changed, 114 insertions(+), 144 deletions(-) diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 20f3714af7..5b162654a7 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -29,7 +29,6 @@ from nemo_rl.data.datasets.response_datasets.response_dataset import ResponseDataset from nemo_rl.data.datasets.response_datasets.squad import SquadDataset from nemo_rl.data.datasets.response_datasets.tulu3 import Tulu3SftMixtureDataset -from nemo_rl.data.datasets.utils import get_extra_kwargs # TODO: refactor this to use the new processor interface and RawDataset interface. https://github.com/NVIDIA-NeMo/RL/issues/1552 @@ -54,6 +53,13 @@ def load_response_dataset(data_config, seed: int = 42): split=data_config["split"], prompt_file=data_config["prompt_file"], ) + elif dataset_name == "tulu3_sft_mixture": + base_dataset: Any = Tulu3SftMixtureDataset( + test_size=data_config.get("test_size", 0.05), + prompt_file=data_config.get("prompt_file", None), + max_samples=data_config.get("max_samples", None), + seed=seed, + ) elif dataset_name == "openai_format": base_dataset = OpenAIFormatDataset( data_config["train_data_path"], @@ -78,30 +84,16 @@ def load_response_dataset(data_config, seed: int = 42): "Loading BytedTsinghua-SIA/DAPO-Math-17k for training and AIME 2024 for validation" ) base_dataset: Any = DAPOMath17KDataset(seed=seed) + elif dataset_name == "HelpSteer3": + base_dataset: Any = HelpSteer3Dataset() # for vlm rl training # TODO: test after GRPO-VLM updated elif dataset_name == "clevr-cogent": - base_dataset: Any = CLEVRCoGenTDataset( - split=data_config["split"], - ) + base_dataset: Any = CLEVRCoGenTDataset(**data_config) elif dataset_name == "refcoco": - base_dataset: Any = RefCOCODataset( - split=data_config["split"], - download_dir=data_config["download_dir"], - ) + base_dataset: Any = RefCOCODataset(**data_config) elif dataset_name == "geometry3k": - base_dataset: Any = Geometry3KDataset( - split=data_config["split"], - ) - elif dataset_name == "tulu3_sft_mixture": - base_dataset: Any = Tulu3SftMixtureDataset( - test_size=data_config.get("test_size", 0.05), - prompt_file=data_config.get("prompt_file", None), - max_samples=data_config.get("max_samples", None), - seed=seed, - ) - elif dataset_name == "HelpSteer3": - base_dataset: Any = HelpSteer3Dataset() + base_dataset: Any = Geometry3KDataset(**data_config) # fall back to load from JSON file elif dataset_name == "ResponseDataset": base_dataset = ResponseDataset(**data_config, seed=seed) diff --git a/nemo_rl/data/datasets/response_datasets/clevr.py b/nemo_rl/data/datasets/response_datasets/clevr.py index 74a0e106b2..a23204a82c 100644 --- a/nemo_rl/data/datasets/response_datasets/clevr.py +++ b/nemo_rl/data/datasets/response_datasets/clevr.py @@ -52,10 +52,7 @@ def format_clevr_cogent_dataset( ret = { "messages": [ {"role": "user", "content": user_content}, - { - "role": "assistant", - "content": assistant_content, - }, + {"role": "assistant", "content": assistant_content}, ], "task_name": example["task_name"], } @@ -63,7 +60,7 @@ def format_clevr_cogent_dataset( class CLEVRCoGenTDataset(RawDataset): - def __init__(self, split: str = "train"): + def __init__(self, split: str = "train", **kwargs): """Simple wrapper around the CLEVR-CoGenT dataset. Args: @@ -82,7 +79,7 @@ def __init__(self, split: str = "train"): self.task_name = "clevr-cogent" - # this dataset will be formatted during training using `format_clevr_cogent_dataset`` + # this dataset will process the image during training using `format_clevr_cogent_dataset` self.dataset = load_dataset(SPLIT_TO_HF_NAME[split])["train"] # format - disable features to avoid schema conflicts diff --git a/nemo_rl/data/datasets/response_datasets/geometry3k.py b/nemo_rl/data/datasets/response_datasets/geometry3k.py index d45fb15127..e24e4218c5 100644 --- a/nemo_rl/data/datasets/response_datasets/geometry3k.py +++ b/nemo_rl/data/datasets/response_datasets/geometry3k.py @@ -11,7 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any, Optional +from typing import Any from datasets import load_dataset @@ -24,11 +24,8 @@ def format_geometry3k_dataset( ) -> dict[str, Any]: """Format the Geometry3K dataset into an OpenAI-API-like message log.""" # isolate single image - example["image"] = ( - example["images"][0] - if isinstance(example["images"], list) - else example["images"] - ) + if isinstance(example["images"], list): + example["image"] = example["images"][0] user_content = [ { @@ -48,50 +45,31 @@ def format_geometry3k_dataset( ret = { "messages": [ {"role": "user", "content": user_content}, - { - "role": "assistant", - "content": assistant_content, - }, + {"role": "assistant", "content": assistant_content}, ], - "task_name": "geometry3k", + "task_name": example["task_name"], } return ret -def prepare_geometry3k_dataset(split: str = "train", task_name: str = "geometry3k"): - if split == "train": - tr_dataset = load_dataset("hiyouga/geometry3k")["train"] - val_dataset = load_dataset("hiyouga/geometry3k")["validation"] - else: - tr_dataset = load_dataset("hiyouga/geometry3k")[split] - val_dataset = load_dataset("hiyouga/geometry3k")[split] - - # format - disable features to avoid schema conflicts - tr_dataset = tr_dataset.add_column("task_name", [task_name] * len(tr_dataset)) - val_dataset = val_dataset.add_column("task_name", [task_name] * len(val_dataset)) - return { - "train": tr_dataset, - "validation": val_dataset, - } - - class Geometry3KDataset(RawDataset): - def __init__( - self, - split: str = "train", - prompt_file: Optional[str] = None, - ): + def __init__(self, split: str = "train", **kwargs): """Simple wrapper around the Geometry3K dataset. Args: split: The split of the dataset to use. - prompt_file: The file containing the prompt for the dataset. """ + # train, validation, and test are supported splits. assert split in ["train", "validation", "test"], ( f"Invalid split: {split}. Please use 'train' or 'validation' or 'test'." ) + self.task_name = "geometry3k" - self.formatted_ds = prepare_geometry3k_dataset( - split=split, task_name=self.task_name + # this dataset will process the image during training using `format_geometry3k_dataset` + self.dataset = load_dataset("hiyouga/geometry3k")[split] + + # format - disable features to avoid schema conflicts + self.dataset = self.dataset.add_column( + "task_name", [self.task_name] * len(self.dataset) ) diff --git a/nemo_rl/data/datasets/response_datasets/refcoco.py b/nemo_rl/data/datasets/response_datasets/refcoco.py index 9f32b1a12d..9c9d2c5125 100644 --- a/nemo_rl/data/datasets/response_datasets/refcoco.py +++ b/nemo_rl/data/datasets/response_datasets/refcoco.py @@ -16,7 +16,7 @@ import random import zipfile from pathlib import Path -from typing import Any, Optional, Union +from typing import Any, Optional import requests from datasets import load_dataset @@ -98,7 +98,6 @@ def format_refcoco_dataset( width: int = 256, height: int = 256, caption_type: str = "random", - prompt_file: Optional[str] = None, ) -> dict[str, Any]: """Format the RefCOCO dataset from huggingface. @@ -158,101 +157,65 @@ def format_refcoco_dataset( ret = { "messages": [ {"role": "user", "content": user_content}, - { - "role": "assistant", - "content": solution, - }, + {"role": "assistant", "content": solution}, ], - "task_name": "refcoco", + "task_name": example["task_name"], } return ret -# contain different variants of the CLEVR dataset -def prepare_refcoco_dataset( - split: str = "default", - task_name: Optional[str] = None, - path_to_coco_images: Optional[Union[str, Path]] = None, -): - if task_name is None: - task_name = "refcoco" - - tr_dataset = load_dataset("jxu124/refcoco")["train"] - val_dataset = load_dataset("jxu124/refcoco")["validation"] - - # format - disable features to avoid schema conflicts - tr_dataset = tr_dataset.add_column("task_name", [task_name] * len(tr_dataset)) - val_dataset = val_dataset.add_column("task_name", [task_name] * len(val_dataset)) - - if path_to_coco_images is None: - print("No path to coco images provided, downloading images to ./coco_images") - path_to_coco_images = Path("./coco_images") - os.makedirs(path_to_coco_images, exist_ok=True) - else: - path_to_coco_images = Path(path_to_coco_images) - - # check for images - if not os.path.exists(str(path_to_coco_images / "train2014")): - print(f"Downloading train2014 images to {path_to_coco_images}") - download_and_unzip( - "http://images.cocodataset.org/zips/train2014.zip", str(path_to_coco_images) - ) - if not os.path.exists(str(path_to_coco_images / "val2014")): - print(f"Downloading val2014 images to {path_to_coco_images}") - download_and_unzip( - "http://images.cocodataset.org/zips/val2014.zip", str(path_to_coco_images) - ) - - # add image column - tr_dataset = tr_dataset.map( - lambda example: { - **example, - "image_path": str(example["image_path"]).replace( - "coco/", str(path_to_coco_images) + "/" - ) - if "image_path" in example - else example.get("image_path"), - } - ) - val_dataset = val_dataset.map( - lambda example: { - **example, - "image_path": str(example["image_path"]).replace( - "coco/", str(path_to_coco_images) + "/" - ) - if "image_path" in example - else example.get("image_path"), - } - ) - - return { - "train": tr_dataset, - "validation": val_dataset, - } - - class RefCOCODataset(RawDataset): def __init__( self, - split: str = "default", - prompt_file: Optional[str] = None, + split: str = "train", download_dir: Optional[str] = None, + **kwargs, ): """Simple wrapper around the RefCOCO dataset. Args: - split: The split of the dataset to use (currently only 'default' is supported) - prompt_file: The file containing the prompt for the dataset. + split: The split of the dataset to use. + download_dir: The directory to download the dataset to """ - VALID_SPLITS = ["default"] - if split not in VALID_SPLITS: + # train and validation are supported splits. + SPLIT_TO_IMAGE_URL = { + "train": "http://images.cocodataset.org/zips/train2014.zip", + "validation": "http://images.cocodataset.org/zips/val2014.zip", + } + if split not in SPLIT_TO_IMAGE_URL: raise ValueError( - f"Invalid split: {split}. Please use one of {VALID_SPLITS}." + f"Invalid split: {split}. Please use 'train' or 'validation'." ) + + self.download_dir = download_dir self.task_name = "refcoco" - self.formatted_ds = prepare_refcoco_dataset( - split=split, - task_name=self.task_name, - path_to_coco_images=download_dir, - ) + # check for images + if self.download_dir is None: + print("No path to coco images provided, set download_dir to ./coco_images") + self.download_dir = Path("./coco_images") + os.makedirs(self.download_dir, exist_ok=True) + else: + self.download_dir = Path(self.download_dir) + + filename = SPLIT_TO_IMAGE_URL[split].split("/")[-1].split(".")[0] + if not os.path.exists(str(self.download_dir / filename)): + print(f"Downloading {filename} images to {self.download_dir}") + download_and_unzip(SPLIT_TO_IMAGE_URL[split], str(self.download_dir)) + + # this dataset will process the image during training using `format_refcoco_dataset` + self.dataset = load_dataset("jxu124/refcoco")[split] + self.dataset = self.dataset.map(self.format_data) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + if "image_path" in data: + image_path = str(data["image_path"]).replace( + "coco/", str(self.download_dir) + "/" + ) + else: + image_path = data["image_path"] + + return { + "image_path": image_path, + "task_name": self.task_name, + } diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 2ebd225d12..f367c8a49d 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -20,6 +20,9 @@ from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data.datasets import load_response_dataset +from nemo_rl.data.datasets.response_datasets.clevr import format_clevr_cogent_dataset +from nemo_rl.data.datasets.response_datasets.geometry3k import format_geometry3k_dataset +from nemo_rl.data.datasets.response_datasets.refcoco import format_refcoco_dataset def create_sample_data(input_key, output_key): @@ -240,3 +243,40 @@ def test_load_dataset_saved_with_save_to_disk(): first_val_example = dataset.formatted_ds["validation"][0] assert first_val_example["messages"][0]["content"] == "What is 3+3?" assert first_val_example["messages"][1]["content"] == "6" + + +@pytest.mark.parametrize( + "dataset_name,format_func", + [ + ("clevr-cogent", format_clevr_cogent_dataset), + ("geometry3k", format_geometry3k_dataset), + # this needs download 13.5G image + # ("refcoco", format_refcoco_dataset), + ], +) +def test_vlm_dataset(dataset_name, format_func): + # load the dataset + data_config = {"dataset_name": dataset_name} + dataset = load_response_dataset(data_config) + + # check the first example + first_example = dataset.dataset[0] + first_example = format_func(first_example) + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + # check content + assert first_example["messages"][0]["role"] == "user" + assert first_example["messages"][0]["content"][0]["type"] == "image" + assert first_example["messages"][0]["content"][1]["type"] == "text" + assert first_example["messages"][1]["role"] == "assistant" + + if dataset_name == "clevr-cogent": + assert first_example["messages"][1]["content"] == "3" + elif dataset_name == "geometry3k": + assert first_example["messages"][1]["content"] == "3" + elif dataset_name == "refcoco": + assert first_example["messages"][1]["content"] == "[243, 469, 558, 746]" From 3b1abf8f4ba13175635d4d098625c8a6415381b0 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Tue, 16 Dec 2025 22:42:56 -0800 Subject: [PATCH 06/41] remove clevr_cogent, always to use clevr-cogent Signed-off-by: Yuki Huang --- examples/configs/sft_vlm_3B.yaml | 9 ++++++-- examples/run_sft.py | 2 +- .../datasets/response_datasets/__init__.py | 22 ++++--------------- 3 files changed, 12 insertions(+), 21 deletions(-) diff --git a/examples/configs/sft_vlm_3B.yaml b/examples/configs/sft_vlm_3B.yaml index 5615e2f99d..398fc64901 100644 --- a/examples/configs/sft_vlm_3B.yaml +++ b/examples/configs/sft_vlm_3B.yaml @@ -23,12 +23,17 @@ checkpointing: data: max_input_seq_length: ${policy.max_total_sequence_length} - dataset_name: "clevr_cogent" add_bos: true add_eos: true add_generation_prompt: false - split: trainA + # dataset prompt_file: null + train: + dataset_name: clevr-cogent + split: train + validation: + dataset_name: clevr-cogent + split: valA logger: log_dir: "logs" # Base directory for all logs diff --git a/examples/run_sft.py b/examples/run_sft.py index 8f65262c73..6323135397 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -112,7 +112,7 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig, seed: int): # add preprocessor if needed datum_preprocessor = None - if "dataset_name" in data_config and data_config["dataset_name"] == "clevr_cogent": + if "dataset_name" in data_config and data_config["dataset_name"] == "clevr-cogent": from nemo_rl.data.datasets.response_datasets.clevr import ( format_clevr_cogent_dataset, ) diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 5b162654a7..ced8c585cf 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -36,7 +36,7 @@ def load_response_dataset(data_config, seed: int = 42): """Loads response dataset.""" dataset_name = data_config["dataset_name"] - # TODO @yukih: remove duplicated dataset_name (openmathinstruct2, clevr_cogent) + # TODO @yukih: remove duplicated dataset_name (openmathinstruct2) # for sft training if dataset_name == "open_assistant": base_dataset = OasstDataset( @@ -48,11 +48,6 @@ def load_response_dataset(data_config, seed: int = 42): elif dataset_name == "openmathinstruct2": # TODO: test after SFT updated base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) - elif dataset_name == "clevr_cogent": - base_dataset = CLEVRCoGenTDataset( - split=data_config["split"], - prompt_file=data_config["prompt_file"], - ) elif dataset_name == "tulu3_sft_mixture": base_dataset: Any = Tulu3SftMixtureDataset( test_size=data_config.get("test_size", 0.05), @@ -86,9 +81,10 @@ def load_response_dataset(data_config, seed: int = 42): base_dataset: Any = DAPOMath17KDataset(seed=seed) elif dataset_name == "HelpSteer3": base_dataset: Any = HelpSteer3Dataset() - # for vlm rl training + # for vlm training # TODO: test after GRPO-VLM updated elif dataset_name == "clevr-cogent": + # TODO: also test after SFT updated base_dataset: Any = CLEVRCoGenTDataset(**data_config) elif dataset_name == "refcoco": base_dataset: Any = RefCOCODataset(**data_config) @@ -105,17 +101,7 @@ def load_response_dataset(data_config, seed: int = 42): ) base_dataset.set_task_spec(data_config) - # Skip sft datasets, the run_sft.py has not been refactored yet. - # TODO: refactor run_sft.py to use the new processor interface. https://github.com/NVIDIA-NeMo/RL/issues/1552 - if dataset_name not in [ - "open_assistant", - "squad", - "openmathinstruct2", - "clevr_cogent", - "openai_format", - "tulu3_sft_mixture", - ]: - base_dataset.set_processor() + base_dataset.set_processor() return base_dataset From a899bdc9bc8fc7e215c997f93bd50b72c869764f Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Tue, 16 Dec 2025 23:01:39 -0800 Subject: [PATCH 07/41] remove openmathinstruct2, always to use OpenMathInstruct-2 Signed-off-by: Yuki Huang --- .../sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml | 13 ++++++++----- .../sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml | 13 ++++++++----- .../llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml | 13 ++++++++----- .../recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml | 13 ++++++++----- .../llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml | 13 ++++++++----- .../recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml | 13 ++++++++----- .../llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml | 13 ++++++++----- .../sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml | 11 +++++++---- .../llm/sft-qwen2.5-math7b-2n8g-megatron.yaml | 11 +++++++---- examples/configs/sft_openmathinstruct2.yaml | 13 +++++++++---- .../configs/sft_openmathinstruct2_megatron.yaml | 13 +++++++++---- examples/configs/sft_vlm_3B.yaml | 1 + examples/configs/vlm_grpo_3B.yaml | 1 + nemo_rl/data/datasets/response_datasets/__init__.py | 5 +---- tests/unit/data/datasets/test_response_dataset.py | 1 - 15 files changed, 91 insertions(+), 56 deletions(-) diff --git a/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml b/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml index aa009da464..9d9908caa9 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml @@ -43,12 +43,15 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + seed: 42 + split_validation_size: 0.05 + validation: null logger: monitor_gpus: false wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml index 88d446283d..8223792688 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml @@ -28,12 +28,15 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + seed: 42 + split_validation_size: 0.05 + validation: null logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml index 86db9da5e0..293068ec52 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml @@ -24,12 +24,15 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + seed: 42 + split_validation_size: 0.05 + validation: null logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml index 31b7538c1c..46df1db2d1 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml @@ -22,12 +22,15 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + seed: 42 + split_validation_size: 0.05 + validation: null logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp2 wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml index 3afca7ba02..c263ac1f84 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml @@ -30,12 +30,15 @@ policy: scheduler: lr_warmup_init: 1.9999e-65 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + seed: 42 + split_validation_size: 0.05 + validation: null logger: log_dir: logs/sft-llama3.1-8b-1n8g-megatron wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml index 2c08bef6f6..4f8be1ac08 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml @@ -28,12 +28,15 @@ policy: scheduler: lr_warmup_init: 1.9999e-65 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + seed: 42 + split_validation_size: 0.05 + validation: null logger: log_dir: logs/sft-llama3.1-8b-1n8g-megatron wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml b/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml index 77ff8aac89..7d368c5be5 100644 --- a/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml +++ b/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml @@ -9,12 +9,15 @@ policy: name: meta-llama/Llama-3.2-1B make_sequence_length_divisible_by: 1 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + seed: 42 + split_validation_size: 0.05 + validation: null logger: log_dir: logs/sft-llama3.2-1b-1n8g-fsdp2tp1 wandb: diff --git a/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml b/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml index c94683c61f..08fda3a8ba 100644 --- a/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml +++ b/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml @@ -15,11 +15,14 @@ policy: tensor_parallel_size: 8 make_sequence_length_divisible_by: 8 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + validation: null logger: log_dir: logs/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt wandb: diff --git a/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml b/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml index 299e426084..0a1ee8cc16 100644 --- a/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml +++ b/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml @@ -33,12 +33,15 @@ policy: enabled: true make_sequence_length_divisible_by: 32 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution num_workers: 8 + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + validation: null logger: wandb: project: nemo-rl diff --git a/examples/configs/sft_openmathinstruct2.yaml b/examples/configs/sft_openmathinstruct2.yaml index 25368f7df5..9503482c05 100644 --- a/examples/configs/sft_openmathinstruct2.yaml +++ b/examples/configs/sft_openmathinstruct2.yaml @@ -69,15 +69,20 @@ policy: data: max_input_seq_length: ${policy.max_total_sequence_length} - dataset_name: "openmathinstruct2" - prompt_file: examples/prompts/math.txt - split: "train_1M" add_bos: true add_eos: true add_generation_prompt: true - output_key: 'generated_solution' shuffle: true + # dataset + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 # use 5% of the training data as validation data + validation: null + logger: log_dir: "logs" # Base directory for all logs wandb_enabled: true # Make sure you do a ``wandb login [Your API key]'' before running diff --git a/examples/configs/sft_openmathinstruct2_megatron.yaml b/examples/configs/sft_openmathinstruct2_megatron.yaml index 0925a5c29a..c1cb3245ce 100644 --- a/examples/configs/sft_openmathinstruct2_megatron.yaml +++ b/examples/configs/sft_openmathinstruct2_megatron.yaml @@ -129,15 +129,20 @@ policy: data: max_input_seq_length: ${policy.max_total_sequence_length} - dataset_name: "openmathinstruct2" - prompt_file: examples/prompts/math.txt - split: "train_1M" add_bos: true add_eos: true add_generation_prompt: true - output_key: 'generated_solution' num_workers: 1 + # dataset + prompt_file: examples/prompts/math.txt + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 # use 5% of the training data as validation data + validation: null + logger: log_dir: "logs" # Base directory for all logs wandb_enabled: true # Make sure you do a ``wandb login [Your API key]'' before running diff --git a/examples/configs/sft_vlm_3B.yaml b/examples/configs/sft_vlm_3B.yaml index 398fc64901..2e8fcda079 100644 --- a/examples/configs/sft_vlm_3B.yaml +++ b/examples/configs/sft_vlm_3B.yaml @@ -26,6 +26,7 @@ data: add_bos: true add_eos: true add_generation_prompt: false + # dataset prompt_file: null train: diff --git a/examples/configs/vlm_grpo_3B.yaml b/examples/configs/vlm_grpo_3B.yaml index 05ad8cf552..6e6e37cff6 100644 --- a/examples/configs/vlm_grpo_3B.yaml +++ b/examples/configs/vlm_grpo_3B.yaml @@ -233,6 +233,7 @@ data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len shuffle: true num_workers: 1 + # dataset prompt_file: "examples/prompts/clevr_cogent_cot.txt" system_prompt_file: null diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index ced8c585cf..31d05758c5 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -36,7 +36,6 @@ def load_response_dataset(data_config, seed: int = 42): """Loads response dataset.""" dataset_name = data_config["dataset_name"] - # TODO @yukih: remove duplicated dataset_name (openmathinstruct2) # for sft training if dataset_name == "open_assistant": base_dataset = OasstDataset( @@ -45,9 +44,6 @@ def load_response_dataset(data_config, seed: int = 42): ) elif dataset_name == "squad": base_dataset = SquadDataset() - elif dataset_name == "openmathinstruct2": - # TODO: test after SFT updated - base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) elif dataset_name == "tulu3_sft_mixture": base_dataset: Any = Tulu3SftMixtureDataset( test_size=data_config.get("test_size", 0.05), @@ -67,6 +63,7 @@ def load_response_dataset(data_config, seed: int = 42): ) # for rl training elif dataset_name == "OpenMathInstruct-2": + # TODO: also test after SFT updated print("Loading nvidia/OpenMathInstruct2Dataset for training and validation") base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) elif dataset_name == "DeepScaler": diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index f367c8a49d..0814922b4b 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -22,7 +22,6 @@ from nemo_rl.data.datasets import load_response_dataset from nemo_rl.data.datasets.response_datasets.clevr import format_clevr_cogent_dataset from nemo_rl.data.datasets.response_datasets.geometry3k import format_geometry3k_dataset -from nemo_rl.data.datasets.response_datasets.refcoco import format_refcoco_dataset def create_sample_data(input_key, output_key): From c4728f1494cee163ebd7d4b2e8c82551cd6358ad Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Tue, 16 Dec 2025 23:42:13 -0800 Subject: [PATCH 08/41] update DAPOMath Signed-off-by: Yuki Huang --- .../configs/recipes/llm/dapo-qwen2.5-7b.yaml | 5 +- .../llm/grpo-dapomath17k-dsv3-megatron.yaml | 5 +- ...en3-8b-base-1n8g-fp8-kvcache-megatron.yaml | 5 +- .../datasets/response_datasets/__init__.py | 13 +-- .../datasets/response_datasets/dapo_math.py | 90 ++++++++----------- .../response_datasets/openmathinstruct2.py | 2 +- .../data/datasets/test_response_dataset.py | 37 ++++++++ 7 files changed, 94 insertions(+), 63 deletions(-) diff --git a/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml b/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml index ffc65b5cae..443ddae765 100644 --- a/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml +++ b/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml @@ -76,7 +76,10 @@ policy: data: max_input_seq_length: 2048 prompt_file: null - dataset_name: DAPOMath17K + train: + dataset_name: DAPOMath17K + validation: + dataset_name: DAPOMathAIME2024 env: math: num_workers: 16 diff --git a/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml b/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml index bc636d931f..a0e0115ea5 100644 --- a/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml +++ b/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml @@ -42,7 +42,10 @@ policy: tensor_parallel_size: 32 data: prompt_file: null - dataset_name: DAPOMath17K + train: + dataset_name: DAPOMath17K + validation: + dataset_name: DAPOMathAIME2024 logger: monitor_gpus: false wandb: diff --git a/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml b/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml index 78b4597c2c..ba39d81eac 100644 --- a/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml +++ b/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml @@ -38,7 +38,10 @@ policy: data: max_input_seq_length: 2048 prompt_file: null - dataset_name: DAPOMath17K + train: + dataset_name: DAPOMath17K + validation: + dataset_name: DAPOMathAIME2024 env: dapo: num_workers: 16 diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 31d05758c5..96d2b2a583 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -14,7 +14,10 @@ from typing import Any from nemo_rl.data.datasets.response_datasets.clevr import CLEVRCoGenTDataset -from nemo_rl.data.datasets.response_datasets.dapo_math import DAPOMath17KDataset +from nemo_rl.data.datasets.response_datasets.dapo_math import ( + DAPOMath17KDataset, + DAPOMathAIME2024Dataset, +) from nemo_rl.data.datasets.response_datasets.deepscaler import DeepScalerDataset from nemo_rl.data.datasets.response_datasets.geometry3k import Geometry3KDataset from nemo_rl.data.datasets.response_datasets.helpsteer3 import HelpSteer3Dataset @@ -72,10 +75,9 @@ def load_response_dataset(data_config, seed: int = 42): ) base_dataset: Any = DeepScalerDataset(seed=seed) elif dataset_name == "DAPOMath17K": - print( - "Loading BytedTsinghua-SIA/DAPO-Math-17k for training and AIME 2024 for validation" - ) - base_dataset: Any = DAPOMath17KDataset(seed=seed) + base_dataset: Any = DAPOMath17KDataset(**data_config) + elif dataset_name == "DAPOMathAIME2024": + base_dataset: Any = DAPOMathAIME2024Dataset(**data_config) elif dataset_name == "HelpSteer3": base_dataset: Any = HelpSteer3Dataset() # for vlm training @@ -107,6 +109,7 @@ def load_response_dataset(data_config, seed: int = 42): "CLEVRCoGenTDataset", "DeepScalerDataset", "DAPOMath17KDataset", + "DAPOMathAIME2024Dataset", "Geometry3KDataset", "OpenAIFormatDataset", "OasstDataset", diff --git a/nemo_rl/data/datasets/response_datasets/dapo_math.py b/nemo_rl/data/datasets/response_datasets/dapo_math.py index 3a9988923b..37f5c5dff7 100644 --- a/nemo_rl/data/datasets/response_datasets/dapo_math.py +++ b/nemo_rl/data/datasets/response_datasets/dapo_math.py @@ -15,69 +15,51 @@ from typing import Any -from datasets import Dataset, load_dataset +from datasets import load_dataset from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_dapo_math_17k( - data: dict[str, str | float | int], - task_name: str = "DAPOMath17K", -) -> dict[str, list[Any] | str]: - return { - "messages": [ - { - "role": "user", - "content": data["prompt"][0]["content"], - }, - { - "role": "assistant", - "content": data["reward_model"]["ground_truth"], - }, - ], - "task_name": task_name, - } - - -def prepare_dapo_math_17k_dataset( - seed: int = 42, task_name: str = "DAPOMath17K" -) -> dict[str, Dataset | None]: - """Load and split the DeepScaler dataset into train and test sets.""" - # Load the original dataset for training - train_ds = load_dataset("BytedTsinghua-SIA/DAPO-Math-17k", split="train") +class DAPOMath17KDataset(RawDataset): + def __init__(self, **kwargs) -> None: + """Initialize the DAPO Math 17K dataset with train split.""" + self.task_name = "DAPOMath17K" - # Load hendrydong/aime24 dataset for validation - val_ds = load_dataset("BytedTsinghua-SIA/AIME-2024", split="train") + # load from huggingface + self.dataset = load_dataset("BytedTsinghua-SIA/DAPO-Math-17k", split="train") - # Shuffle the training dataset with the specified seed - train_ds = train_ds.shuffle(seed=seed) + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, + ) - # Format the examples, removing original columns - train_formatted = train_ds.map( - format_dapo_math_17k, - remove_columns=train_ds.column_names, - fn_kwargs={"task_name": task_name}, - ) - val_formatted = val_ds.map( - format_dapo_math_17k, - remove_columns=val_ds.column_names, - fn_kwargs={"task_name": task_name}, - ) + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + { + "role": "user", + "content": data["prompt"][0]["content"], + }, + { + "role": "assistant", + "content": data["reward_model"]["ground_truth"], + }, + ], + "task_name": self.task_name, + } - return { - "train": train_formatted, - "validation": val_formatted, - } +class DAPOMathAIME2024Dataset(DAPOMath17KDataset): + def __init__(self, **kwargs) -> None: + """Initialize the DAPO Math AIME 2024 dataset with train split.""" + self.task_name = "DAPOMathAIME2024" -class DAPOMath17KDataset(RawDataset): - def __init__(self, seed: int = 42) -> None: - """Initialize the DAPO Math 17K dataset with train split. + # load from huggingface + self.dataset = load_dataset("BytedTsinghua-SIA/AIME-2024", split="train") - Args: - seed: Random seed for reproducible splitting - """ - self.task_name = "DAPOMath17K" - self.formatted_ds = prepare_dapo_math_17k_dataset( - seed=seed, task_name=self.task_name + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, ) diff --git a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py index 666bc1151f..6c78ce2096 100644 --- a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py +++ b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py @@ -44,7 +44,7 @@ def __init__( self.output_key = output_key self.task_name = "OpenMathInstruct-2" - # load from local or huggingface + # load from huggingface self.dataset = load_dataset("nvidia/OpenMathInstruct-2", split=split) # format the dataset diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 0814922b4b..6cdc1caf10 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -128,6 +128,43 @@ def test_openmathinstruct2_dataset(output_key, tokenizer): ) +@pytest.mark.parametrize("dataset_name", ["DAPOMath17K", "DAPOMathAIME2024"]) +def test_dapo_math_dataset(dataset_name, tokenizer): + # load the dataset + data_config = {"dataset_name": dataset_name} + dataset = load_response_dataset(data_config) + + # check the first example + first_example = dataset.dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + if dataset_name == "DAPOMath17K": + assert first_example["messages"][1]["content"] == "34" + elif dataset_name == "DAPOMathAIME2024": + assert first_example["messages"][1]["content"] == "540" + + # check the combined message + chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" + combined_message = tokenizer.apply_chat_template( + first_example["messages"], + chat_template=chat_template, + tokenize=False, + add_generation_prompt=False, + add_special_tokens=False, + ) + + assert combined_message == ( + " Question: " + + first_example["messages"][0]["content"] + + " Answer: " + + first_example["messages"][1]["content"] + ) + + @pytest.mark.hf_gated @pytest.mark.skip(reason="dataset download is flaky") def test_squad_dataset(): From 3fe8f026c809fb9f7e0f14eed12e84c4d8e18eb9 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 00:16:26 -0800 Subject: [PATCH 09/41] update DeepScaler Signed-off-by: Yuki Huang --- examples/configs/distillation_math.yaml | 10 ++- .../recipes/llm/grpo-deepscaler-1.5b-8K.yaml | 6 +- .../llm/grpo-gspo-deepscaler-1.5b-8K.yaml | 6 +- .../datasets/response_datasets/__init__.py | 13 +-- .../data/datasets/response_datasets/aime24.py | 47 ++++++++++ .../datasets/response_datasets/deepscaler.py | 86 +++++-------------- .../data/datasets/test_response_dataset.py | 81 +++++++++-------- 7 files changed, 138 insertions(+), 111 deletions(-) create mode 100644 nemo_rl/data/datasets/response_datasets/aime24.py diff --git a/examples/configs/distillation_math.yaml b/examples/configs/distillation_math.yaml index 9e32814a62..abced361b2 100644 --- a/examples/configs/distillation_math.yaml +++ b/examples/configs/distillation_math.yaml @@ -209,10 +209,16 @@ teacher: data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len + shuffle: true + + # dataset prompt_file: "examples/prompts/cot.txt" system_prompt_file: null - dataset_name: "DeepScaler" - shuffle: true + train: + dataset_name: DeepScaler + validation: + dataset_name: AIME2024 + repeat: 16 env: math: diff --git a/examples/configs/recipes/llm/grpo-deepscaler-1.5b-8K.yaml b/examples/configs/recipes/llm/grpo-deepscaler-1.5b-8K.yaml index 584b807663..ca29b07aac 100644 --- a/examples/configs/recipes/llm/grpo-deepscaler-1.5b-8K.yaml +++ b/examples/configs/recipes/llm/grpo-deepscaler-1.5b-8K.yaml @@ -28,7 +28,11 @@ policy: compilation_config: use_inductor: false data: - dataset_name: DeepScaler + train: + dataset_name: DeepScaler + validation: + dataset_name: AIME2024 + repeat: 16 env: math: num_workers: 16 diff --git a/examples/configs/recipes/llm/grpo-gspo-deepscaler-1.5b-8K.yaml b/examples/configs/recipes/llm/grpo-gspo-deepscaler-1.5b-8K.yaml index d5525fc027..e98d7d4680 100644 --- a/examples/configs/recipes/llm/grpo-gspo-deepscaler-1.5b-8K.yaml +++ b/examples/configs/recipes/llm/grpo-gspo-deepscaler-1.5b-8K.yaml @@ -30,7 +30,11 @@ policy: vllm_cfg: enforce_eager: true data: - dataset_name: DeepScaler + train: + dataset_name: DeepScaler + validation: + dataset_name: AIME2024 + repeat: 16 env: math: num_workers: 16 diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 96d2b2a583..a7b084aa8c 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -13,6 +13,7 @@ # limitations under the License. from typing import Any +from nemo_rl.data.datasets.response_datasets.aime24 import AIME2024Dataset from nemo_rl.data.datasets.response_datasets.clevr import CLEVRCoGenTDataset from nemo_rl.data.datasets.response_datasets.dapo_math import ( DAPOMath17KDataset, @@ -70,16 +71,15 @@ def load_response_dataset(data_config, seed: int = 42): print("Loading nvidia/OpenMathInstruct2Dataset for training and validation") base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) elif dataset_name == "DeepScaler": - print( - "Loading agentica-org/DeepScaleR-Preview-Dataset for training and validation" - ) - base_dataset: Any = DeepScalerDataset(seed=seed) + base_dataset: Any = DeepScalerDataset(**data_config) elif dataset_name == "DAPOMath17K": base_dataset: Any = DAPOMath17KDataset(**data_config) - elif dataset_name == "DAPOMathAIME2024": - base_dataset: Any = DAPOMathAIME2024Dataset(**data_config) elif dataset_name == "HelpSteer3": base_dataset: Any = HelpSteer3Dataset() + elif dataset_name == "AIME2024": + base_dataset: Any = AIME2024Dataset(**data_config) + elif dataset_name == "DAPOMathAIME2024": + base_dataset: Any = DAPOMathAIME2024Dataset(**data_config) # for vlm training # TODO: test after GRPO-VLM updated elif dataset_name == "clevr-cogent": @@ -106,6 +106,7 @@ def load_response_dataset(data_config, seed: int = 42): __all__ = [ + "AIME2024Dataset", "CLEVRCoGenTDataset", "DeepScalerDataset", "DAPOMath17KDataset", diff --git a/nemo_rl/data/datasets/response_datasets/aime24.py b/nemo_rl/data/datasets/response_datasets/aime24.py new file mode 100644 index 0000000000..bc3c06d7aa --- /dev/null +++ b/nemo_rl/data/datasets/response_datasets/aime24.py @@ -0,0 +1,47 @@ +# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Any + +from datasets import load_dataset + +from nemo_rl.data.datasets.raw_dataset import RawDataset + + +class AIME2024Dataset(RawDataset): + def __init__(self, repeat: int = 16, **kwargs) -> None: + """Initialize the AIME2024 dataset with train split.""" + self.task_name = "AIME2024" + + # load from huggingface + self.dataset = load_dataset("HuggingFaceH4/aime_2024", split="train") + + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, + ) + + # repeat the dataset + self.dataset = self.dataset.repeat(repeat) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + {"role": "user", "content": data["problem"]}, + {"role": "assistant", "content": data["answer"]}, + ], + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/deepscaler.py b/nemo_rl/data/datasets/response_datasets/deepscaler.py index 3465491225..efdadd9371 100644 --- a/nemo_rl/data/datasets/response_datasets/deepscaler.py +++ b/nemo_rl/data/datasets/response_datasets/deepscaler.py @@ -15,74 +15,32 @@ from typing import Any -from datasets import Dataset, load_dataset +from datasets import load_dataset from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_math( - data: dict[str, str | float | int], task_name: str = "DeepScaler" -) -> dict[str, list[Any] | str]: - return { - "messages": [ - { - "role": "user", - "content": data["problem"], - }, - { - "role": "assistant", - "content": data["answer"], - }, - ], - "task_name": task_name, - } - - -def prepare_deepscaler_dataset( - seed: int = 42, task_name: str = "DeepScaler" -) -> dict[str, Dataset | None]: - """Load and split the DeepScaler dataset into train and test sets.""" - # Load the original dataset for training - train_ds = load_dataset("agentica-org/DeepScaleR-Preview-Dataset", split="train") - - # Load hendrydong/aime24 dataset for validation - val_ds = load_dataset("HuggingFaceH4/aime_2024", split="train") - - # Shuffle the training dataset with the specified seed - train_ds = train_ds.shuffle(seed=seed) - - # Format the examples, removing original columns - train_formatted = train_ds.map( - format_math, - remove_columns=train_ds.column_names, - fn_kwargs={"task_name": task_name}, - ) - val_formatted = val_ds.map( - format_math, - remove_columns=val_ds.column_names, - fn_kwargs={"task_name": task_name}, - ) - - # Compute accuracy 16 times per sample (matching the DeepScaleR evaluation setting) - val_repeated = [] - for _ in range(16): - val_repeated.extend(val_formatted) - val_formatted = val_formatted.from_list(val_repeated) - - return { - "train": train_formatted, - "validation": val_formatted, - } - - class DeepScalerDataset(RawDataset): - def __init__(self, seed: int = 42) -> None: - """Initialize the DeepScaler dataset with train/test split. - - Args: - seed: Random seed for reproducible splitting - """ + def __init__(self, **kwargs) -> None: + """Initialize the DeepScaler dataset with train split.""" self.task_name = "DeepScaler" - self.formatted_ds = prepare_deepscaler_dataset( - seed=seed, task_name=self.task_name + + # load from huggingface + self.dataset = load_dataset( + "agentica-org/DeepScaleR-Preview-Dataset", split="train" ) + + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, + ) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + {"role": "user", "content": data["problem"]}, + {"role": "assistant", "content": data["answer"]}, + ], + "task_name": self.task_name, + } diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 6cdc1caf10..08e1999524 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -128,43 +128,6 @@ def test_openmathinstruct2_dataset(output_key, tokenizer): ) -@pytest.mark.parametrize("dataset_name", ["DAPOMath17K", "DAPOMathAIME2024"]) -def test_dapo_math_dataset(dataset_name, tokenizer): - # load the dataset - data_config = {"dataset_name": dataset_name} - dataset = load_response_dataset(data_config) - - # check the first example - first_example = dataset.dataset[0] - - # only contains messages and task_name - assert len(first_example.keys()) == 2 - assert "messages" in first_example - assert "task_name" in first_example - - if dataset_name == "DAPOMath17K": - assert first_example["messages"][1]["content"] == "34" - elif dataset_name == "DAPOMathAIME2024": - assert first_example["messages"][1]["content"] == "540" - - # check the combined message - chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" - combined_message = tokenizer.apply_chat_template( - first_example["messages"], - chat_template=chat_template, - tokenize=False, - add_generation_prompt=False, - add_special_tokens=False, - ) - - assert combined_message == ( - " Question: " - + first_example["messages"][0]["content"] - + " Answer: " - + first_example["messages"][1]["content"] - ) - - @pytest.mark.hf_gated @pytest.mark.skip(reason="dataset download is flaky") def test_squad_dataset(): @@ -281,6 +244,50 @@ def test_load_dataset_saved_with_save_to_disk(): assert first_val_example["messages"][1]["content"] == "6" +@pytest.mark.parametrize( + "dataset_name", ["DAPOMath17K", "DAPOMathAIME2024", "DeepScaler", "AIME2024"] +) +def test_build_in_dataset(dataset_name, tokenizer): + # load the dataset + data_config = {"dataset_name": dataset_name} + dataset = load_response_dataset(data_config) + + # check the first example + first_example = dataset.dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + if dataset_name == "DAPOMath17K": + assert first_example["messages"][1]["content"] == "34" + elif dataset_name == "DAPOMathAIME2024": + assert first_example["messages"][1]["content"] == "540" + elif dataset_name == "DeepScaler": + assert first_example["messages"][1]["content"] == "-\\frac{2}{3}" + elif dataset_name == "AIME2024": + assert first_example["messages"][1]["content"] == "204" + assert len(dataset.dataset) == 480 + + # check the combined message + chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" + combined_message = tokenizer.apply_chat_template( + first_example["messages"], + chat_template=chat_template, + tokenize=False, + add_generation_prompt=False, + add_special_tokens=False, + ) + + assert combined_message == ( + " Question: " + + first_example["messages"][0]["content"] + + " Answer: " + + first_example["messages"][1]["content"] + ) + + @pytest.mark.parametrize( "dataset_name,format_func", [ From 73cfa58df264be15240e7e6f961da455113be07b Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 00:44:36 -0800 Subject: [PATCH 10/41] update HelpSteer3 Signed-off-by: Yuki Huang --- ...er-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled | 8 +- nemo_rl/data/datasets/__init__.py | 1 + nemo_rl/data/datasets/processed_dataset.py | 1 + .../datasets/response_datasets/__init__.py | 3 +- .../data/datasets/response_datasets/aime24.py | 1 - .../datasets/response_datasets/dapo_math.py | 1 - .../datasets/response_datasets/deepscaler.py | 1 - .../datasets/response_datasets/geometry3k.py | 1 + .../datasets/response_datasets/helpsteer3.py | 77 ++++++++++--------- .../data/datasets/response_datasets/squad.py | 1 - nemo_rl/data/datasets/utils.py | 1 + .../data/datasets/test_response_dataset.py | 19 +++++ 12 files changed, 70 insertions(+), 45 deletions(-) diff --git a/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled b/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled index b1f65495fa..d9c95e026c 100644 --- a/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled +++ b/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled @@ -45,10 +45,14 @@ data: # Training with HelpSteer3 will lead to high logprob error. # ISSUE: https://github.com/NVIDIA-NeMo/RL/issues/1570 prompt_file: null - dataset_name: HelpSteer3 - split: preference env_name: "code_jaccard" processor: helpsteer3_data_processor + train: + dataset_name: HelpSteer3 + split: train + validation: + dataset_name: HelpSteer3 + split: validation env: code_jaccard: num_workers: 8 diff --git a/nemo_rl/data/datasets/__init__.py b/nemo_rl/data/datasets/__init__.py index dc5767b5fe..5e32b337b4 100644 --- a/nemo_rl/data/datasets/__init__.py +++ b/nemo_rl/data/datasets/__init__.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + from nemo_rl.data.datasets.eval_datasets import load_eval_dataset from nemo_rl.data.datasets.preference_datasets import load_preference_dataset from nemo_rl.data.datasets.processed_dataset import AllTaskProcessedDataset diff --git a/nemo_rl/data/datasets/processed_dataset.py b/nemo_rl/data/datasets/processed_dataset.py index 906ab591fc..67aa0b0df2 100644 --- a/nemo_rl/data/datasets/processed_dataset.py +++ b/nemo_rl/data/datasets/processed_dataset.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + from typing import Any, Optional, Union import torch diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index a7b084aa8c..59d2b01642 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + from typing import Any from nemo_rl.data.datasets.response_datasets.aime24 import AIME2024Dataset @@ -75,7 +76,7 @@ def load_response_dataset(data_config, seed: int = 42): elif dataset_name == "DAPOMath17K": base_dataset: Any = DAPOMath17KDataset(**data_config) elif dataset_name == "HelpSteer3": - base_dataset: Any = HelpSteer3Dataset() + base_dataset: Any = HelpSteer3Dataset(**data_config) elif dataset_name == "AIME2024": base_dataset: Any = AIME2024Dataset(**data_config) elif dataset_name == "DAPOMathAIME2024": diff --git a/nemo_rl/data/datasets/response_datasets/aime24.py b/nemo_rl/data/datasets/response_datasets/aime24.py index bc3c06d7aa..83675ca97c 100644 --- a/nemo_rl/data/datasets/response_datasets/aime24.py +++ b/nemo_rl/data/datasets/response_datasets/aime24.py @@ -12,7 +12,6 @@ # See the License for the specific language governing permissions and # limitations under the License. - from typing import Any from datasets import load_dataset diff --git a/nemo_rl/data/datasets/response_datasets/dapo_math.py b/nemo_rl/data/datasets/response_datasets/dapo_math.py index 37f5c5dff7..66de63c8ff 100644 --- a/nemo_rl/data/datasets/response_datasets/dapo_math.py +++ b/nemo_rl/data/datasets/response_datasets/dapo_math.py @@ -12,7 +12,6 @@ # See the License for the specific language governing permissions and # limitations under the License. - from typing import Any from datasets import load_dataset diff --git a/nemo_rl/data/datasets/response_datasets/deepscaler.py b/nemo_rl/data/datasets/response_datasets/deepscaler.py index efdadd9371..4000d92bef 100644 --- a/nemo_rl/data/datasets/response_datasets/deepscaler.py +++ b/nemo_rl/data/datasets/response_datasets/deepscaler.py @@ -12,7 +12,6 @@ # See the License for the specific language governing permissions and # limitations under the License. - from typing import Any from datasets import load_dataset diff --git a/nemo_rl/data/datasets/response_datasets/geometry3k.py b/nemo_rl/data/datasets/response_datasets/geometry3k.py index e24e4218c5..480ea7e2fb 100644 --- a/nemo_rl/data/datasets/response_datasets/geometry3k.py +++ b/nemo_rl/data/datasets/response_datasets/geometry3k.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + from typing import Any from datasets import load_dataset diff --git a/nemo_rl/data/datasets/response_datasets/helpsteer3.py b/nemo_rl/data/datasets/response_datasets/helpsteer3.py index 7d275634ef..3bfaf86d73 100644 --- a/nemo_rl/data/datasets/response_datasets/helpsteer3.py +++ b/nemo_rl/data/datasets/response_datasets/helpsteer3.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + from typing import Any from absl import logging @@ -19,44 +20,44 @@ from nemo_rl.data.datasets.raw_dataset import RawDataset -# Choose the chosen response as the response and the rejected response as the target -def to_response_data_format( - data: dict[str, Any], task_name: str = "HelpSteer3" -) -> dict: - response_1 = data["response1"] - response_2 = data["response2"] - overall_preference = data["overall_preference"] - - if overall_preference < 0: - chosen = response_1 - elif overall_preference == 0: - logging.log_every_n( - logging.WARNING, - "Preference is 0 for some examples! Setting chosen and rejected to response 1 since we don't know which response is better", - 1000, - ) - chosen = response_1 - else: - chosen = response_2 - - if isinstance(data["context"], str): - context = [{"role": "user", "content": data["context"]}] - else: - context = data["context"] - - return { - "context": context, - "response": [{"role": "assistant", "content": chosen}], - "task_name": task_name, - } - - class HelpSteer3Dataset(RawDataset): - """HelpSteer3 preference dataset for DPO training.""" - - def __init__(self) -> None: - ds = load_dataset("nvidia/HelpSteer3", "preference") + def __init__(self, split: str = "train", **kwargs): + """Initialize the HelpSteer3 dataset with preference split.""" self.task_name = "HelpSteer3" - self.formatted_ds = ds.map( - to_response_data_format, fn_kwargs={"task_name": self.task_name} + + # load from huggingface + self.dataset = load_dataset("nvidia/HelpSteer3", "preference")[split] + + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, ) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + response_1 = data["response1"] + response_2 = data["response2"] + overall_preference = data["overall_preference"] + + if overall_preference < 0: + chosen = response_1 + elif overall_preference == 0: + logging.log_every_n( + logging.WARNING, + "Preference is 0 for some examples! Setting chosen and rejected to response 1 since we don't know which response is better", + 1000, + ) + chosen = response_1 + else: + chosen = response_2 + + if isinstance(data["context"], str): + context = [{"role": "user", "content": data["context"]}] + else: + context = data["context"] + + return { + "context": context, + "response": [{"role": "assistant", "content": chosen}], + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/squad.py b/nemo_rl/data/datasets/response_datasets/squad.py index c4e1023424..1a855d2f81 100644 --- a/nemo_rl/data/datasets/response_datasets/squad.py +++ b/nemo_rl/data/datasets/response_datasets/squad.py @@ -12,7 +12,6 @@ # See the License for the specific language governing permissions and # limitations under the License. - from typing import Any from datasets import load_dataset diff --git a/nemo_rl/data/datasets/utils.py b/nemo_rl/data/datasets/utils.py index 4db03ac527..7dcbcd0efa 100644 --- a/nemo_rl/data/datasets/utils.py +++ b/nemo_rl/data/datasets/utils.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + import base64 import io import os diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 08e1999524..3a1ce2c08e 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -128,6 +128,25 @@ def test_openmathinstruct2_dataset(output_key, tokenizer): ) +def test_helpsteer3_dataset(): + # load the dataset + data_config = {"dataset_name": "HelpSteer3"} + dataset = load_response_dataset(data_config) + + # check the first example + first_example = dataset.dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 3 + assert "context" in first_example + assert "response" in first_example + assert "task_name" in first_example + + assert len(first_example["context"]) == 7 + assert first_example["response"][0]["role"] == "assistant" + assert first_example["response"][0]["content"][:20] == "Yes, you are correct" + + @pytest.mark.hf_gated @pytest.mark.skip(reason="dataset download is flaky") def test_squad_dataset(): From 0e6e8dcc2a0b58b7280f33fa90f89c75bdedcadb Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 01:32:09 -0800 Subject: [PATCH 11/41] update squad Signed-off-by: Yuki Huang --- ...lama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml | 2 +- .../sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml | 2 +- examples/configs/sft.yaml | 27 +++---- .../datasets/response_datasets/__init__.py | 2 +- .../data/datasets/response_datasets/squad.py | 51 +++++++------ .../data/datasets/test_response_dataset.py | 72 ++++++------------- 6 files changed, 67 insertions(+), 89 deletions(-) diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml index 8223792688..d702bc7695 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml @@ -43,6 +43,6 @@ logger: project: nemo-rl name: sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long tensorboard: - log_dir: tb_logs-sft-dev-squad + log_dir: tb_logs-sft-dev-openmathinstruct2 cluster: gpus_per_node: 8 diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml index 293068ec52..4a913fcd3a 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml @@ -39,6 +39,6 @@ logger: project: nemo-rl name: sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long tensorboard: - log_dir: tb_logs-sft-dev-squad + log_dir: tb_logs-sft-dev-openmathinstruct2 cluster: gpus_per_node: 8 diff --git a/examples/configs/sft.yaml b/examples/configs/sft.yaml index 486841cdc2..871b336b0b 100644 --- a/examples/configs/sft.yaml +++ b/examples/configs/sft.yaml @@ -182,24 +182,27 @@ data: shuffle: true num_workers: 1 - dataset_name: "squad" + train: + dataset_name: "squad" + split: "train" + validation: + dataset_name: "squad" + split: "validation" # You can use custom response datasets for training and validation. For example: - # data: + # train: # dataset_name: ResponseDataset - # train_data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - # val_data_path: + # data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) # input_key: , default is "input" # output_key: , default is "output" - # train_split: , default is None # used for HuggingFace datasets - # val_split: , default is None # used for HuggingFace datasets + # split: , default is None # used for HuggingFace datasets + # validation: + # dataset_name: ResponseDataset + # data_path: + # input_key: , default is "input" + # output_key: , default is "output" + # split: , default is None # used for HuggingFace datasets # See https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/sft.md#datasets for more details. - ## unused with squad dataset - prompt_file: null - split: null - output_key: null - seed: null - ## OpenAI format specific configs # train_data_path: "/path/to/train.jsonl" # Path to training data diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 59d2b01642..0d1908d5c7 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -48,7 +48,7 @@ def load_response_dataset(data_config, seed: int = 42): seed=seed, ) elif dataset_name == "squad": - base_dataset = SquadDataset() + base_dataset = SquadDataset(**data_config) elif dataset_name == "tulu3_sft_mixture": base_dataset: Any = Tulu3SftMixtureDataset( test_size=data_config.get("test_size", 0.05), diff --git a/nemo_rl/data/datasets/response_datasets/squad.py b/nemo_rl/data/datasets/response_datasets/squad.py index 1a855d2f81..1556e55e80 100644 --- a/nemo_rl/data/datasets/response_datasets/squad.py +++ b/nemo_rl/data/datasets/response_datasets/squad.py @@ -19,27 +19,34 @@ from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_squad(data: dict[str, Any]) -> dict[str, list[dict[str, str]]]: - return { - "messages": [ - { - "role": "system", - "content": data["context"], - }, - { - "role": "user", - "content": data["question"], - }, - { - "role": "assistant", - "content": data["answers"]["text"][0], - }, - ] - } +class SquadDataset(RawDataset): + def __init__(self, split: str = "train", **kwargs) -> None: + self.task_name = "squad" + # load from huggingface + self.dataset = load_dataset("rajpurkar/squad")[split] -class SquadDataset(RawDataset): - def __init__(self) -> None: - original_ds = load_dataset("rajpurkar/squad") - self.task_name = "SQuAD" - self.formatted_ds = original_ds.map(format_squad) + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, + ) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + { + "role": "system", + "content": data["context"], + }, + { + "role": "user", + "content": data["question"], + }, + { + "role": "assistant", + "content": data["answers"]["text"][0], + }, + ], + "task_name": self.task_name, + } diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 3a1ce2c08e..d15b62b55d 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -16,7 +16,6 @@ import tempfile import pytest -from transformers import AutoTokenizer from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data.datasets import load_response_dataset @@ -147,50 +146,6 @@ def test_helpsteer3_dataset(): assert first_example["response"][0]["content"][:20] == "Yes, you are correct" -@pytest.mark.hf_gated -@pytest.mark.skip(reason="dataset download is flaky") -def test_squad_dataset(): - # load the dataset - data_config = { - "dataset_name": "squad", - "prompt_file": None, - "system_prompt_file": None, - } - squad_dataset = load_response_dataset(data_config) - - # load the tokenizer - tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") - - # check that the dataset is formatted correctly - for example in squad_dataset.formatted_ds["train"].take(5): - assert "messages" in example - assert len(example["messages"]) == 3 - - assert example["messages"][0]["role"] == "system" - assert example["messages"][1]["role"] == "user" - assert example["messages"][2]["role"] == "assistant" - - template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" - - ## check that applying chat template works as expected - default_templated = tokenizer.apply_chat_template( - example["messages"], - chat_template=template, - tokenize=False, - add_generation_prompt=False, - add_special_tokens=False, - ) - - assert default_templated == ( - "Context: " - + example["messages"][0]["content"] - + " Question: " - + example["messages"][1]["content"] - + " Answer: " - + example["messages"][2]["content"] - ) - - def test_load_dataset_saved_with_save_to_disk(): """Test loading a dataset that was saved using HuggingFace's save_to_disk(). @@ -264,7 +219,8 @@ def test_load_dataset_saved_with_save_to_disk(): @pytest.mark.parametrize( - "dataset_name", ["DAPOMath17K", "DAPOMathAIME2024", "DeepScaler", "AIME2024"] + "dataset_name", + ["DAPOMath17K", "DAPOMathAIME2024", "DeepScaler", "AIME2024", "squad"], ) def test_build_in_dataset(dataset_name, tokenizer): # load the dataset @@ -288,6 +244,8 @@ def test_build_in_dataset(dataset_name, tokenizer): elif dataset_name == "AIME2024": assert first_example["messages"][1]["content"] == "204" assert len(dataset.dataset) == 480 + elif dataset_name == "squad": + assert first_example["messages"][2]["content"] == "Saint Bernadette Soubirous" # check the combined message chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" @@ -299,12 +257,22 @@ def test_build_in_dataset(dataset_name, tokenizer): add_special_tokens=False, ) - assert combined_message == ( - " Question: " - + first_example["messages"][0]["content"] - + " Answer: " - + first_example["messages"][1]["content"] - ) + if dataset_name == "squad": + assert combined_message == ( + "Context: " + + first_example["messages"][0]["content"] + + " Question: " + + first_example["messages"][1]["content"] + + " Answer: " + + first_example["messages"][2]["content"] + ) + else: + assert combined_message == ( + " Question: " + + first_example["messages"][0]["content"] + + " Answer: " + + first_example["messages"][1]["content"] + ) @pytest.mark.parametrize( From 5a1c4df875b7000b394b4b5432059aa0cfa6a6a0 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 06:29:24 -0800 Subject: [PATCH 12/41] update tulu3 Signed-off-by: Yuki Huang --- .../sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml | 7 +- ...49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled | 6 +- .../datasets/response_datasets/__init__.py | 15 +-- .../data/datasets/response_datasets/tulu3.py | 74 +++++-------- .../data/datasets/test_response_dataset.py | 101 ++++++++++-------- 5 files changed, 99 insertions(+), 104 deletions(-) diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml index 784e4a02d5..4a67b3581d 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml @@ -26,9 +26,12 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: tulu3_sft_mixture add_generation_prompt: true - seed: 42 + train: + dataset_name: tulu3_sft_mixture + seed: 42 + split_validation_size: 0.05 + validation: null logger: log_dir: logs/sft-tmblog-llama3.1-8b tensorboard_enabled: false diff --git a/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled b/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled index d224a6d51f..9cc94d8574 100644 --- a/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled +++ b/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled @@ -44,9 +44,11 @@ policy: - milestones: - 10 data: - dataset_name: tulu3_sft_mixture num_workers: 20 - test_size: 0.05 + train: + dataset_name: tulu3_sft_mixture + split_validation_size: 0.05 + validation: null logger: tensorboard_enabled: false monitor_gpus: false diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 0d1908d5c7..cb0d0fba7e 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -43,21 +43,16 @@ def load_response_dataset(data_config, seed: int = 42): # for sft training if dataset_name == "open_assistant": - base_dataset = OasstDataset( + base_dataset: Any = OasstDataset( output_dir="/tmp/open_assistant", seed=seed, ) elif dataset_name == "squad": - base_dataset = SquadDataset(**data_config) + base_dataset: Any = SquadDataset(**data_config) elif dataset_name == "tulu3_sft_mixture": - base_dataset: Any = Tulu3SftMixtureDataset( - test_size=data_config.get("test_size", 0.05), - prompt_file=data_config.get("prompt_file", None), - max_samples=data_config.get("max_samples", None), - seed=seed, - ) + base_dataset: Any = Tulu3SftMixtureDataset(**data_config, seed=seed) elif dataset_name == "openai_format": - base_dataset = OpenAIFormatDataset( + base_dataset: Any = OpenAIFormatDataset( data_config["train_data_path"], data_config["val_data_path"], data_config["chat_key"], @@ -92,7 +87,7 @@ def load_response_dataset(data_config, seed: int = 42): base_dataset: Any = Geometry3KDataset(**data_config) # fall back to load from JSON file elif dataset_name == "ResponseDataset": - base_dataset = ResponseDataset(**data_config, seed=seed) + base_dataset: Any = ResponseDataset(**data_config, seed=seed) else: raise ValueError( f"Unsupported {dataset_name=}. " diff --git a/nemo_rl/data/datasets/response_datasets/tulu3.py b/nemo_rl/data/datasets/response_datasets/tulu3.py index 9dc29dd83f..db23ddc3e3 100644 --- a/nemo_rl/data/datasets/response_datasets/tulu3.py +++ b/nemo_rl/data/datasets/response_datasets/tulu3.py @@ -19,38 +19,19 @@ from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_tulu3_sft_mixture( - data: dict[str, Any], task_name: str = "tulu3_sft_mixture" -) -> dict[str, str | dict[str, str]]: - """Format for Tulu3 SFT data.""" - messages = data["messages"] - - # Ensure last message is from assistant - if not messages or messages[-1]["role"] != "assistant": - raise ValueError(f"Expected last message to be from assistant, got: {messages}") - - return { - "messages": messages, - "task_name": task_name, - } - - class Tulu3SftMixtureDataset(RawDataset): - """Tulu3 SFT mixture dataset.""" - def __init__( self, + split_validation_size: float = 0.05, seed: int = 42, - test_size: float = 0.05, - prompt_file: str | None = None, max_samples: int | None = None, + **kwargs, ) -> None: """Initialize the Tulu3 SFT mixture dataset. Args: seed: Random seed for train/validation split test_size: Proportion of data to use for validation (0.0-1.0) - prompt_file: Optional prompt file path to be applied via TaskDataSpec max_samples: Optional maximum number of samples to use from the dataset """ print( @@ -59,34 +40,37 @@ def __init__( self.task_name = "tulu3_sft_mixture" - # Load the original dataset - original_ds = load_dataset( - path="allenai/tulu-3-sft-mixture", - trust_remote_code=True, - )["train"] # This dataset only has a train split + # load from huggingface + self.dataset = load_dataset("allenai/tulu-3-sft-mixture")["train"] # Optionally limit the number of samples if max_samples is not None and max_samples > 0: - original_ds = original_ds.shuffle(seed=seed).select( - range(min(max_samples, len(original_ds))) + self.dataset = self.dataset.shuffle(seed=seed).select( + range(min(max_samples, len(self.dataset))) ) - # Split into train and validation sets - split_ds = original_ds.train_test_split(test_size=test_size, seed=seed) - - # Format the examples without any reasoning processing - train_formatted = split_ds["train"].map( - format_tulu3_sft_mixture, - remove_columns=split_ds["train"].column_names, - fn_kwargs={"task_name": self.task_name}, - ) - val_formatted = split_ds["test"].map( - format_tulu3_sft_mixture, - remove_columns=split_ds["test"].column_names, - fn_kwargs={"task_name": self.task_name}, + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=["id", "source"], ) - self.formatted_ds = { - "train": train_formatted, - "validation": val_formatted, - } + # use only when current dataset is used for both training and validation + self.val_dataset = None + if split_validation_size > 0: + split_dataset = self.dataset.train_test_split( + test_size=split_validation_size, seed=seed + ) + self.dataset = split_dataset["train"] + self.val_dataset = split_dataset["test"] + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + messages = data["messages"] + + # Ensure last message is from assistant + if not messages or messages[-1]["role"] != "assistant": + raise ValueError( + f"Expected last message to be from assistant, got: {messages}" + ) + + return {"task_name": self.task_name} diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index d15b62b55d..9d17a05736 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -82,51 +82,6 @@ def test_response_dataset(input_key, output_key, tokenizer): assert combined_message == " Question: Hello Answer: Hi there!" -@pytest.mark.parametrize("output_key", ["expected_answer", "generated_solution"]) -def test_openmathinstruct2_dataset(output_key, tokenizer): - # load the dataset - data_config = { - "dataset_name": "OpenMathInstruct-2", - "output_key": output_key, - "split_validation_size": 0.05, - } - dataset = load_response_dataset(data_config) - - # check the first example - first_example = dataset.dataset[0] - first_val_example = dataset.val_dataset[0] - - # only contains messages and task_name - assert len(first_example.keys()) == 2 - assert "messages" in first_example - assert "task_name" in first_example - - assert first_example["messages"][0]["content"][:20] == "An octahedron has ei" - if output_key == "expected_answer": - assert first_example["messages"][1]["content"][:20] == "\\frac{8\\sqrt{3}}{3}" - elif output_key == "generated_solution": - assert first_example["messages"][1]["content"][:20] == "Let's denote the poi" - - # check the combined message - messages = [first_example["messages"], first_val_example["messages"]] - chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" - combined_message = tokenizer.apply_chat_template( - messages, - chat_template=chat_template, - tokenize=False, - add_generation_prompt=False, - add_special_tokens=False, - ) - - for i in range(2): - assert combined_message[i] == ( - " Question: " - + messages[i][0]["content"] - + " Answer: " - + messages[i][1]["content"] - ) - - def test_helpsteer3_dataset(): # load the dataset data_config = {"dataset_name": "HelpSteer3"} @@ -275,6 +230,62 @@ def test_build_in_dataset(dataset_name, tokenizer): ) +@pytest.mark.parametrize( + "dataset_name,output_key", + [ + ("OpenMathInstruct-2", "expected_answer"), + ("OpenMathInstruct-2", "generated_solution"), + ("tulu3_sft_mixture", None), + ], +) +def test_build_in_dataset_with_split_validation(dataset_name, output_key, tokenizer): + # load the dataset + data_config = { + "dataset_name": dataset_name, + "output_key": output_key, + "split_validation_size": 0.05, + } + dataset = load_response_dataset(data_config) + + # check the first example + first_example = dataset.dataset[0] + first_val_example = dataset.val_dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + if dataset_name == "OpenMathInstruct-2": + if output_key == "expected_answer": + assert first_example["messages"][1]["content"] == "\\frac{8\\sqrt{3}}{3}" + elif output_key == "generated_solution": + assert ( + first_example["messages"][1]["content"][:20] == "Let's denote the poi" + ) + elif dataset_name == "tulu3_sft_mixture": + assert first_example["messages"][1]["content"][:20] == "I'm sorry, but I can" + + # check the combined message + messages = [first_example["messages"], first_val_example["messages"]] + chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" + combined_message = tokenizer.apply_chat_template( + messages, + chat_template=chat_template, + tokenize=False, + add_generation_prompt=False, + add_special_tokens=False, + ) + + for i in range(2): + assert combined_message[i] == ( + " Question: " + + messages[i][0]["content"] + + " Answer: " + + messages[i][1]["content"] + ) + + @pytest.mark.parametrize( "dataset_name,format_func", [ From fdc749a0bc28ecbfb502230109759c4b8c3320a8 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 07:49:15 -0800 Subject: [PATCH 13/41] update oasst Signed-off-by: Yuki Huang --- .../datasets/response_datasets/__init__.py | 5 +- .../data/datasets/response_datasets/oasst.py | 75 ++++++++----------- .../data/datasets/test_response_dataset.py | 29 ++++++- 3 files changed, 60 insertions(+), 49 deletions(-) diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index cb0d0fba7e..9ad377c876 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -43,10 +43,7 @@ def load_response_dataset(data_config, seed: int = 42): # for sft training if dataset_name == "open_assistant": - base_dataset: Any = OasstDataset( - output_dir="/tmp/open_assistant", - seed=seed, - ) + base_dataset: Any = OasstDataset(**data_config, seed=seed) elif dataset_name == "squad": base_dataset: Any = SquadDataset(**data_config) elif dataset_name == "tulu3_sft_mixture": diff --git a/nemo_rl/data/datasets/response_datasets/oasst.py b/nemo_rl/data/datasets/response_datasets/oasst.py index 327bc52b8f..88b330fd2e 100644 --- a/nemo_rl/data/datasets/response_datasets/oasst.py +++ b/nemo_rl/data/datasets/response_datasets/oasst.py @@ -15,10 +15,9 @@ import copy import gzip import json -import os -import random -import requests +from datasets import Dataset +from huggingface_hub import hf_hub_download from nemo_rl.data.datasets.raw_dataset import RawDataset @@ -87,46 +86,34 @@ def get_data_records(objs, task_name: str = "OASST"): return output -def download_and_process_oasst( - output_directory: str = ".", - seed: int = 42, - task_name: str = "OASST", - split_ratio: float = 0.95, -) -> dict[str, list]: - os.makedirs(output_directory, exist_ok=True) - filename = f"{output_directory}/2023-04-12_oasst_all.trees.jsonl.gz" - - # only download if doesn't exist - if not os.path.isfile(filename): - url = "https://huggingface.co/datasets/OpenAssistant/oasst1/resolve/main/2023-04-12_oasst_all.trees.jsonl.gz" - response = requests.get(url) - with open(filename, mode="wb") as fw: - fw.write(response.content) - - with gzip.open(filename) as f: - file_content = f.readlines() - - all_objs = [json.loads(dp.decode("utf-8")) for dp in file_content] - - random.seed(seed) - random.shuffle(all_objs) - train_num = int(len(all_objs) * split_ratio) - train_objs = all_objs[:train_num] - val_objs = all_objs[train_num:] - train_records = get_data_records(train_objs, task_name=task_name) - val_records = get_data_records(val_objs, task_name=task_name) - - formatted_ds = { - "train": train_records, - "validation": val_records, - } - - return formatted_ds - - class OasstDataset(RawDataset): - def __init__(self, output_dir: str = ".", seed: int = 42) -> None: - self.task_name = "OASST" - self.formatted_ds = download_and_process_oasst( - output_dir, seed, task_name=self.task_name + def __init__( + self, + split_validation_size: float = 0.05, + seed: int = 42, + **kwargs, + ): + self.task_name = "oasst" + + # load from huggingface + filename = hf_hub_download( + repo_id="OpenAssistant/oasst1", + filename="2023-04-12_oasst_all.trees.jsonl.gz", + repo_type="dataset", ) + with gzip.open(filename) as f: + file_content = f.readlines() + + # format the dataset + all_objs = [json.loads(dp.decode("utf-8")) for dp in file_content] + self.dataset = get_data_records(all_objs, task_name=self.task_name) + self.dataset = Dataset.from_list(self.dataset) + + # use only when current dataset is used for both training and validation + self.val_dataset = None + if split_validation_size > 0: + split_dataset = self.dataset.train_test_split( + test_size=split_validation_size, seed=seed + ) + self.dataset = split_dataset["train"] + self.val_dataset = split_dataset["test"] diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 9d17a05736..69d60847f2 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -96,6 +96,7 @@ def test_helpsteer3_dataset(): assert "response" in first_example assert "task_name" in first_example + # check the content assert len(first_example["context"]) == 7 assert first_example["response"][0]["role"] == "assistant" assert first_example["response"][0]["content"][:20] == "Yes, you are correct" @@ -173,6 +174,30 @@ def test_load_dataset_saved_with_save_to_disk(): assert first_val_example["messages"][1]["content"] == "6" +def test_open_assistant_dataset(): + # load the dataset + data_config = { + "dataset_name": "open_assistant", + "split_validation_size": 0.05, + } + dataset = load_response_dataset(data_config) + + # check the first example + first_example = dataset.dataset[0] + first_val_example = dataset.val_dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + # check the content + assert first_example["messages"][-1]["content"][:20] == "```\n def forward(" + assert len(first_example["messages"]) == 7 + assert first_val_example["messages"][-1]["content"][:20] == "The colors you shoul" + assert len(first_val_example["messages"]) == 5 + + @pytest.mark.parametrize( "dataset_name", ["DAPOMath17K", "DAPOMathAIME2024", "DeepScaler", "AIME2024", "squad"], @@ -190,6 +215,7 @@ def test_build_in_dataset(dataset_name, tokenizer): assert "messages" in first_example assert "task_name" in first_example + # check the content if dataset_name == "DAPOMath17K": assert first_example["messages"][1]["content"] == "34" elif dataset_name == "DAPOMathAIME2024": @@ -256,6 +282,7 @@ def test_build_in_dataset_with_split_validation(dataset_name, output_key, tokeni assert "messages" in first_example assert "task_name" in first_example + # check the content if dataset_name == "OpenMathInstruct-2": if output_key == "expected_answer": assert first_example["messages"][1]["content"] == "\\frac{8\\sqrt{3}}{3}" @@ -309,7 +336,7 @@ def test_vlm_dataset(dataset_name, format_func): assert "messages" in first_example assert "task_name" in first_example - # check content + # check the content assert first_example["messages"][0]["role"] == "user" assert first_example["messages"][0]["content"][0]["type"] == "image" assert first_example["messages"][0]["content"][1]["type"] == "text" From f6b176ee16cb2f71fc8ce9c9bfe02e5db20701be Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 08:24:01 -0800 Subject: [PATCH 14/41] update oai Signed-off-by: Yuki Huang --- .../datasets/response_datasets/__init__.py | 10 +-- .../response_datasets/oai_format_dataset.py | 66 ++++++---------- .../data/datasets/test_oai_format_dataset.py | 78 +++++++++---------- 3 files changed, 61 insertions(+), 93 deletions(-) diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 9ad377c876..9f7e9511b0 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -49,15 +49,7 @@ def load_response_dataset(data_config, seed: int = 42): elif dataset_name == "tulu3_sft_mixture": base_dataset: Any = Tulu3SftMixtureDataset(**data_config, seed=seed) elif dataset_name == "openai_format": - base_dataset: Any = OpenAIFormatDataset( - data_config["train_data_path"], - data_config["val_data_path"], - data_config["chat_key"], - data_config["system_key"], - data_config["system_prompt"], - data_config["tool_key"], - data_config["use_preserving_dataset"], - ) + base_dataset: Any = OpenAIFormatDataset(**data_config) # for rl training elif dataset_name == "OpenMathInstruct-2": # TODO: also test after SFT updated diff --git a/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py b/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py index 2dfb44aada..a0f4748031 100644 --- a/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py @@ -97,8 +97,7 @@ class OpenAIFormatDataset(RawDataset): } Args: - train_ds_path: Path to the training dataset JSON file - val_ds_path: Path to the validation dataset JSON file + data_path: Path to the dataset JSON file chat_key: Key for the messages list in the dataset (default: "messages") system_key: Optional key for system prompt in the dataset system_prompt: Optional system prompt to add if not in the dataset @@ -121,36 +120,33 @@ class OpenAIFormatDataset(RawDataset): def __init__( self, - train_ds_path: str, - val_ds_path: str, + data_path: str, chat_key: str = "messages", system_key: str | None = None, system_prompt: str | None = None, tool_key: str | None = "tools", use_preserving_dataset: bool = False, + **kwargs, ): self.chat_key = chat_key self.system_key = system_key self.system_prompt = system_prompt self.tool_key = tool_key - self.task_name = "json_dataset" + self.task_name = data_path.split("/")[-1].split(".")[0] + if not use_preserving_dataset: # Use the standard HuggingFace approach (faster and more standard) - train_original_dataset = load_dataset("json", data_files=train_ds_path)[ - "train" - ] - val_original_dataset = load_dataset("json", data_files=val_ds_path)["train"] - - formatted_train_dataset = train_original_dataset.map(self.add_messages_key) - formatted_val_dataset = val_original_dataset.map(self.add_messages_key) + original_dataset = load_dataset("json", data_files=data_path)["train"] + # Format the dataset + self.dataset = original_dataset.map(self.format_data) print( - f"Loaded dataset using standard approach (train: {len(formatted_train_dataset)}, val: {len(formatted_val_dataset)})" + f"Loaded dataset using standard approach: {len(self.dataset)} samples." ) # Warn if tools are present in the dataset if self.tool_key and any( - self.tool_key in sample for sample in formatted_train_dataset + self.tool_key in sample for sample in self.dataset ): warnings.warn( "Tools detected in dataset. Set use_preserving_dataset=True to preserve heterogeneous tool schemas. " @@ -173,46 +169,28 @@ def __init__( ) # Load JSON files directly - with open(train_ds_path, "r") as f: - train_data = [json.loads(line) for line in f] - - with open(val_ds_path, "r") as f: - val_data = [json.loads(line) for line in f] - - # Apply transformations - formatted_train_data = [self.add_messages_key(item) for item in train_data] - formatted_val_data = [self.add_messages_key(item) for item in val_data] - + with open(data_path, "r") as f: + original_dataset = [json.loads(line) for line in f] + # Format the dataset + formatted_data = [self.format_data(item) for item in original_dataset] # Use PreservingDataset to maintain exact structure - formatted_train_dataset = PreservingDataset(formatted_train_data) - formatted_val_dataset = PreservingDataset(formatted_val_data) + self.dataset = PreservingDataset(formatted_data) print( - f"Loaded dataset using PreservingDataset (train: {len(formatted_train_dataset)}, val: {len(formatted_val_dataset)})" + f"Loaded dataset using PreservingDataset: {len(self.dataset)} samples." ) - self.formatted_ds = { - "train": formatted_train_dataset, - "validation": formatted_val_dataset, - } - self.task_name = "json_dataset" - - def add_messages_key( - self, - example: dict[str, Any], - ) -> dict[str, list[dict[str, Any]]]: - messages = [message for message in example[self.chat_key]] - if self.system_key is not None and self.system_key in example: - messages = [ - {"role": "system", "content": example[self.system_key]} - ] + messages + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + messages = [message for message in data[self.chat_key]] + if self.system_key is not None and self.system_key in data: + messages = [{"role": "system", "content": data[self.system_key]}] + messages elif self.system_prompt: messages = [{"role": "system", "content": self.system_prompt}] + messages assert messages[-1]["role"] == "assistant" # Preserve tools if they exist in the data result = {"messages": messages} - if self.tool_key and self.tool_key in example: - result["tools"] = example[self.tool_key] + if self.tool_key and self.tool_key in data: + result["tools"] = data[self.tool_key] return result diff --git a/tests/unit/data/datasets/test_oai_format_dataset.py b/tests/unit/data/datasets/test_oai_format_dataset.py index aad989ed15..197ece16c9 100644 --- a/tests/unit/data/datasets/test_oai_format_dataset.py +++ b/tests/unit/data/datasets/test_oai_format_dataset.py @@ -16,9 +16,10 @@ import tempfile import pytest -from transformers import AutoTokenizer +from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data.chat_templates import COMMON_CHAT_TEMPLATES +from nemo_rl.data.datasets import load_response_dataset from nemo_rl.data.datasets.response_datasets import OpenAIFormatDataset @@ -27,73 +28,71 @@ def sample_data(request): chat_key = request.param[0] system_key = request.param[1] - train_data = { + data = { chat_key: [ {"role": "user", "content": "What is the capital of France?"}, {"role": "assistant", "content": "The capital of France is Paris."}, ], } - val_data = { - chat_key: [ - {"role": "user", "content": "What is the capital of Germany?"}, - {"role": "assistant", "content": "The capital of Germany is Berlin."}, - ], - } if system_key is not None: - train_data[system_key] = "You are a helpful assistant." - if system_key is not None: - val_data[system_key] = "You are a helpful assistant." + data[system_key] = "You are a helpful assistant." # Create temporary files for train and validation data - with tempfile.NamedTemporaryFile( - mode="w", suffix=".json", delete=False - ) as train_file: - json.dump(train_data, train_file) - train_path = train_file.name + with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f: + json.dump(data, f) + data_path = f.name + + return data_path - with tempfile.NamedTemporaryFile( - mode="w", suffix=".json", delete=False - ) as val_file: - json.dump(val_data, val_file) - val_path = val_file.name - return train_path, val_path +@pytest.fixture(scope="function") +def tokenizer(): + """Initialize tokenizer for the test model.""" + tokenizer = get_tokenizer({"name": "Qwen/Qwen3-0.6B"}) + return tokenizer @pytest.mark.parametrize("sample_data", [("messages", None)], indirect=True) def test_dataset_initialization(sample_data): - train_path, val_path = sample_data - dataset = OpenAIFormatDataset(train_path, val_path) + data_path = sample_data + data_config = { + "dataset_name": "openai_format", + "data_path": data_path, + } + dataset = load_response_dataset(data_config) assert dataset.chat_key == "messages" - assert "train" in dataset.formatted_ds - assert "validation" in dataset.formatted_ds + assert len(dataset.dataset) == 1 @pytest.mark.parametrize("sample_data", [("conversations", None)], indirect=True) def test_custom_keys(sample_data): - train_path, val_path = sample_data - dataset = OpenAIFormatDataset( - train_path, - val_path, - chat_key="conversations", - system_prompt="You are a helpful assistant.", - ) + data_path = sample_data + data_config = { + "dataset_name": "openai_format", + "data_path": data_path, + "chat_key": "conversations", + "system_prompt": "You are a helpful assistant.", + } + dataset = load_response_dataset(data_config) assert dataset.chat_key == "conversations" assert dataset.system_prompt == "You are a helpful assistant." -@pytest.mark.hf_gated @pytest.mark.parametrize("sample_data", [("messages", "system_key")], indirect=True) -def test_message_formatting(sample_data): - train_path, val_path = sample_data +def test_message_formatting(sample_data, tokenizer): + # load the dataset + data_path = sample_data dataset = OpenAIFormatDataset( - train_path, val_path, chat_key="messages", system_key="system_key" + data_path, + chat_key="messages", + system_key="system_key", ) - first_example = dataset.formatted_ds["train"][0] + # check the first example + first_example = dataset.dataset[0] assert first_example["messages"][0]["role"] == "system" assert first_example["messages"][0]["content"] == "You are a helpful assistant." @@ -102,9 +101,8 @@ def test_message_formatting(sample_data): assert first_example["messages"][2]["role"] == "assistant" assert first_example["messages"][2]["content"] == "The capital of France is Paris." + # check the combined message chat_template = COMMON_CHAT_TEMPLATES.passthrough_prompt_response - tokenizer = AutoTokenizer.from_pretrained("Meta-Llama/Meta-Llama-3-8B-Instruct") - combined_message = tokenizer.apply_chat_template( first_example["messages"], chat_template=chat_template, From 72fdb1bea8ebe936e343d2d3c7d625a7f846fb08 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Thu, 18 Dec 2025 04:00:17 +0000 Subject: [PATCH 15/41] lint Signed-off-by: Yuki Huang --- .../data/datasets/response_datasets/oasst.py | 2 +- .../datasets/response_datasets/refcoco.py | 25 ++++++------------- nemo_rl/data/datasets/utils.py | 2 +- .../data/datasets/test_response_dataset.py | 3 +-- 4 files changed, 10 insertions(+), 22 deletions(-) diff --git a/nemo_rl/data/datasets/response_datasets/oasst.py b/nemo_rl/data/datasets/response_datasets/oasst.py index 88b330fd2e..1cde74b734 100644 --- a/nemo_rl/data/datasets/response_datasets/oasst.py +++ b/nemo_rl/data/datasets/response_datasets/oasst.py @@ -66,7 +66,7 @@ def parse_conversations(tree_obj, first: bool = False): return all_conversations -def get_data_records(objs, task_name: str = "OASST"): +def get_data_records(objs, task_name: str = "oasst"): ## TODO: old format was multi-conversation per example, but ours is single conversation ## is this just because of the input data format? output = [] diff --git a/nemo_rl/data/datasets/response_datasets/refcoco.py b/nemo_rl/data/datasets/response_datasets/refcoco.py index 9c9d2c5125..d2f6e6f57f 100644 --- a/nemo_rl/data/datasets/response_datasets/refcoco.py +++ b/nemo_rl/data/datasets/response_datasets/refcoco.py @@ -15,8 +15,7 @@ import os import random import zipfile -from pathlib import Path -from typing import Any, Optional +from typing import Any import requests from datasets import load_dataset @@ -168,7 +167,7 @@ class RefCOCODataset(RawDataset): def __init__( self, split: str = "train", - download_dir: Optional[str] = None, + download_dir: str = "./coco_images", **kwargs, ): """Simple wrapper around the RefCOCO dataset. @@ -191,29 +190,19 @@ def __init__( self.task_name = "refcoco" # check for images - if self.download_dir is None: - print("No path to coco images provided, set download_dir to ./coco_images") - self.download_dir = Path("./coco_images") - os.makedirs(self.download_dir, exist_ok=True) - else: - self.download_dir = Path(self.download_dir) - filename = SPLIT_TO_IMAGE_URL[split].split("/")[-1].split(".")[0] - if not os.path.exists(str(self.download_dir / filename)): - print(f"Downloading {filename} images to {self.download_dir}") - download_and_unzip(SPLIT_TO_IMAGE_URL[split], str(self.download_dir)) + if not os.path.exists(f"{download_dir}/{filename}"): + print(f"Downloading {filename} images to {download_dir}") + download_and_unzip(SPLIT_TO_IMAGE_URL[split], download_dir) # this dataset will process the image during training using `format_refcoco_dataset` self.dataset = load_dataset("jxu124/refcoco")[split] self.dataset = self.dataset.map(self.format_data) def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + image_path = None if "image_path" in data: - image_path = str(data["image_path"]).replace( - "coco/", str(self.download_dir) + "/" - ) - else: - image_path = data["image_path"] + image_path = data["image_path"].replace("coco/", self.download_dir + "/") return { "image_path": image_path, diff --git a/nemo_rl/data/datasets/utils.py b/nemo_rl/data/datasets/utils.py index 7dcbcd0efa..d6e86895a6 100644 --- a/nemo_rl/data/datasets/utils.py +++ b/nemo_rl/data/datasets/utils.py @@ -109,7 +109,7 @@ def get_extra_kwargs(data_config: dict, keys: list[str]) -> dict: return extra_kwargs -def update_single_dataset_config(data_config: dict, default_data_config: dict) -> dict: +def update_single_dataset_config(data_config: dict, default_data_config: dict) -> None: """Fill the single dataset config with default dataset config.""" fill_keys = [ "prompt_file", diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 69d60847f2..3bfdec5b1a 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -318,8 +318,7 @@ def test_build_in_dataset_with_split_validation(dataset_name, output_key, tokeni [ ("clevr-cogent", format_clevr_cogent_dataset), ("geometry3k", format_geometry3k_dataset), - # this needs download 13.5G image - # ("refcoco", format_refcoco_dataset), + # ("refcoco", format_refcoco_dataset), # this needs download 13.5G image ], ) def test_vlm_dataset(dataset_name, format_func): From b2f547af36ec789940b48b475f9d38499a1f3d75 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 21:17:08 -0800 Subject: [PATCH 16/41] pyrefly Signed-off-by: Yuki Huang --- examples/configs/distillation_math.yaml | 6 +-- .../configs/distillation_math_megatron.yaml | 6 +-- examples/configs/sft.yaml | 8 ++-- examples/configs/sft_vlm_3B.yaml | 4 +- nemo_rl/data/__init__.py | 41 +++++++++++++------ .../datasets/response_datasets/__init__.py | 12 ++++-- pyrefly.toml | 8 ++-- 7 files changed, 55 insertions(+), 30 deletions(-) diff --git a/examples/configs/distillation_math.yaml b/examples/configs/distillation_math.yaml index abced361b2..0baebf17fa 100644 --- a/examples/configs/distillation_math.yaml +++ b/examples/configs/distillation_math.yaml @@ -234,12 +234,12 @@ logger: monitor_gpus: true wandb: project: "nemo-distillation" - name: "distillation-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + name: "distillation-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" swanlab: project: "nemo-distillation" - name: "distillation-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + name: "distillation-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" tensorboard: - log_dir: "tb_logs-distillation-${data.dataset_name}" + log_dir: "tb_logs-distillation-${data.train.dataset_name}" mlflow: experiment_name: "distillation-dev" run_name: "distillation-math-cl-logger" diff --git a/examples/configs/distillation_math_megatron.yaml b/examples/configs/distillation_math_megatron.yaml index 04802ac0ca..ae2fbcd3e1 100644 --- a/examples/configs/distillation_math_megatron.yaml +++ b/examples/configs/distillation_math_megatron.yaml @@ -150,11 +150,11 @@ logger: wandb_enabled: true wandb: project: "nemo-distillation" - name: "distillation-megatron-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + name: "distillation-megatron-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" tensorboard: - log_dir: "tb_logs-distillation-megatron-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + log_dir: "tb_logs-distillation-megatron-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" mlflow: - run_name: "distillation-math-megatron-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + run_name: "distillation-math-megatron-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" cluster: gpus_per_node: 8 diff --git a/examples/configs/sft.yaml b/examples/configs/sft.yaml index 871b336b0b..1e93743f80 100644 --- a/examples/configs/sft.yaml +++ b/examples/configs/sft.yaml @@ -222,15 +222,15 @@ logger: monitor_gpus: true # If true, will monitor GPU usage and log to wandb and/or tensorboard wandb: project: "sft-dev" - name: "sft-dev-${data.dataset_name}" + name: "sft-dev-${data.train.dataset_name}" swanlab: project: "sft-dev" - name: "sft-dev-${data.dataset_name}" + name: "sft-dev-${data.train.dataset_name}" tensorboard: - log_dir: "tb_logs-sft-dev-${data.dataset_name}" + log_dir: "tb_logs-sft-dev-${data.train.dataset_name}" mlflow: experiment_name: "sft-dev" - run_name: "sft-dev-${data.dataset_name}" + run_name: "sft-dev-${data.train.dataset_name}" gpu_monitoring: collection_interval: 10 # How often to collect GPU usage metrics (in seconds) flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds) diff --git a/examples/configs/sft_vlm_3B.yaml b/examples/configs/sft_vlm_3B.yaml index 2e8fcda079..799eb00ba4 100644 --- a/examples/configs/sft_vlm_3B.yaml +++ b/examples/configs/sft_vlm_3B.yaml @@ -43,9 +43,9 @@ logger: monitor_gpus: true # If true, will monitor GPU usage and log to wandb and/or tensorboard wandb: project: "sft-dev" - name: "sft-dev-${data.dataset_name}" + name: "sft-dev-${data.train.dataset_name}" tensorboard: - log_dir: "tb_logs-sft-dev-${data.dataset_name}" + log_dir: "tb_logs-sft-dev-${data.train.dataset_name}" gpu_monitoring: collection_interval: 10 # How often to collect GPU usage metrics (in seconds) flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds) diff --git a/nemo_rl/data/__init__.py b/nemo_rl/data/__init__.py index 3e40c9d78c..09137ab982 100644 --- a/nemo_rl/data/__init__.py +++ b/nemo_rl/data/__init__.py @@ -15,32 +15,49 @@ from typing import Literal, NotRequired, TypedDict -# TODO: split this typed dict up so it can be PreferenceDataConfig | ResponseDataConfig | etc +class ResponseDatasetConfig(TypedDict): + dataset_name: str + data_path: NotRequired[str] + input_key: NotRequired[str] + output_key: NotRequired[str] + split: NotRequired[str] + prompt_file: NotRequired[str | None] + system_prompt_file: NotRequired[str | None] + env_name: NotRequired[str] + download_dir: NotRequired[str] + split_validation_size: NotRequired[float] + + +# TODO: split this typed dict up so it can be PreferenceDatasetConfig | ResponseDatasetConfig | etc # so that we can type check the configs more rigorously as opposed to saying everything # is not required. class DataConfig(TypedDict): max_input_seq_length: int - prompt_file: NotRequired[str | None] - system_prompt_file: NotRequired[str | None] - dataset_name: str - val_dataset_name: NotRequired[str] add_bos: NotRequired[bool] add_eos: NotRequired[bool] - input_key: NotRequired[str] - output_key: NotRequired[str | None] add_generation_prompt: NotRequired[bool] add_system_prompt: NotRequired[bool] - split: NotRequired[str | None] shuffle: bool - seed: NotRequired[int | None] - download_dir: NotRequired[str] - train_data_path: NotRequired[str] - val_data_paths: NotRequired[dict[str, str]] # Number of data loader workers. # Set to 8 or 10 for large batches to improve loading speed. # This saturates CPU threads without consuming too much memory # However, setting it too high might cause memory issues for long seqlens. num_workers: NotRequired[int] + # dataset configs + prompt_file: NotRequired[str | None] + system_prompt_file: NotRequired[str | None] + env_name: NotRequired[str] + # TODO: remove NotRequired once preference dataset is refactored + train: NotRequired[ResponseDatasetConfig] + validation: NotRequired[ResponseDatasetConfig | None] + # TODO: remove once preference dataset is refactored + dataset_name: NotRequired[str] + val_dataset_name: NotRequired[str] + input_key: NotRequired[str] + output_key: NotRequired[str | None] + split: NotRequired[str] + train_data_path: NotRequired[str] + val_data_paths: NotRequired[dict[str, str]] # =============================================================================== diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 9f7e9511b0..831639682f 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -14,6 +14,7 @@ from typing import Any +from nemo_rl.data import ResponseDatasetConfig from nemo_rl.data.datasets.response_datasets.aime24 import AIME2024Dataset from nemo_rl.data.datasets.response_datasets.clevr import CLEVRCoGenTDataset from nemo_rl.data.datasets.response_datasets.dapo_math import ( @@ -37,7 +38,7 @@ # TODO: refactor this to use the new processor interface and RawDataset interface. https://github.com/NVIDIA-NeMo/RL/issues/1552 -def load_response_dataset(data_config, seed: int = 42): +def load_response_dataset(data_config: ResponseDatasetConfig, seed: int = 42): """Loads response dataset.""" dataset_name = data_config["dataset_name"] @@ -49,7 +50,9 @@ def load_response_dataset(data_config, seed: int = 42): elif dataset_name == "tulu3_sft_mixture": base_dataset: Any = Tulu3SftMixtureDataset(**data_config, seed=seed) elif dataset_name == "openai_format": - base_dataset: Any = OpenAIFormatDataset(**data_config) + base_dataset: Any = OpenAIFormatDataset( + **data_config # pyrefly: ignore[missing-argument] `data_path` is required for this class + ) # for rl training elif dataset_name == "OpenMathInstruct-2": # TODO: also test after SFT updated @@ -76,7 +79,10 @@ def load_response_dataset(data_config, seed: int = 42): base_dataset: Any = Geometry3KDataset(**data_config) # fall back to load from JSON file elif dataset_name == "ResponseDataset": - base_dataset: Any = ResponseDataset(**data_config, seed=seed) + base_dataset: Any = ResponseDataset( + **data_config, # pyrefly: ignore[missing-argument] `data_path` is required for this class + seed=seed, + ) else: raise ValueError( f"Unsupported {dataset_name=}. " diff --git a/pyrefly.toml b/pyrefly.toml index e4e5116937..0a710a1ca5 100644 --- a/pyrefly.toml +++ b/pyrefly.toml @@ -38,8 +38,8 @@ project-includes = [ "examples/custom_parallel/llama_nemotron_super_49b_custom_plan.py", "nemo_rl/algorithms/__init__.py", "nemo_rl/algorithms/interfaces.py", - "nemo_rl/algorithms/utils.py", "nemo_rl/algorithms/reward_functions.py", + "nemo_rl/algorithms/utils.py", "nemo_rl/data/__init__.py", "nemo_rl/data/chat_templates.py", "nemo_rl/data/collate_fn.py", @@ -59,13 +59,15 @@ project-includes = [ "nemo_rl/data/datasets/processed_dataset.py", "nemo_rl/data/datasets/raw_dataset.py", "nemo_rl/data/datasets/response_datasets/__init__.py", + "nemo_rl/data/datasets/response_datasets/aime24.py", "nemo_rl/data/datasets/response_datasets/clevr.py", + "nemo_rl/data/datasets/response_datasets/dapo_math.py", "nemo_rl/data/datasets/response_datasets/deepscaler.py", "nemo_rl/data/datasets/response_datasets/geometry3k.py", + "nemo_rl/data/datasets/response_datasets/helpsteer3.py", "nemo_rl/data/datasets/response_datasets/oai_format_dataset.py", "nemo_rl/data/datasets/response_datasets/oasst.py", "nemo_rl/data/datasets/response_datasets/openmathinstruct2.py", - "nemo_rl/data/datasets/response_datasets/helpsteer3.py", "nemo_rl/data/datasets/response_datasets/refcoco.py", "nemo_rl/data/datasets/response_datasets/response_dataset.py", "nemo_rl/data/datasets/response_datasets/squad.py", @@ -82,8 +84,8 @@ project-includes = [ "nemo_rl/distributed/virtual_cluster.py", "nemo_rl/distributed/worker_group_utils.py", "nemo_rl/environments/__init__.py", - "nemo_rl/environments/games/sliding_puzzle.py", "nemo_rl/environments/code_jaccard_environment.py", + "nemo_rl/environments/games/sliding_puzzle.py", "nemo_rl/environments/interfaces.py", "nemo_rl/environments/math_environment.py", "nemo_rl/environments/metrics.py", From 2b25ad91751a3c1117f2aac72e799a41c1ddb494 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 23:06:55 -0800 Subject: [PATCH 17/41] update doc Signed-off-by: Yuki Huang --- docs/guides/grpo.md | 69 +++++++++++++++++++++------------------------ docs/guides/sft.md | 40 +++++++++++++++----------- 2 files changed, 56 insertions(+), 53 deletions(-) diff --git a/docs/guides/grpo.md b/docs/guides/grpo.md index 08a2d5fc19..6383fb5c6a 100755 --- a/docs/guides/grpo.md +++ b/docs/guides/grpo.md @@ -43,13 +43,19 @@ By default, NeMo RL has support for [OpenMathInstruct-2](../../nemo_rl/data/data We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with JSONL-formatted response datasets for loading datasets from local path or Hugging Face. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml data: - dataset_name: ResponseDataset - train_data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - val_data_path: - input_key: , default is "input" - output_key: , default is "output" - train_split: , default is None # used for HuggingFace datasets - val_split: , default is None # used for HuggingFace datasets + train: + dataset_name: ResponseDataset + data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) + input_key: , default is "input" + output_key: , default is "output" + split: , default is None # used for HuggingFace datasets + split_validation_size: 0.05 # use 5% of the training data as validation data + validation: + dataset_name: ResponseDataset + data_path: + input_key: , default is "input" + output_key: , default is "output" + split: , default is None # used for HuggingFace datasets ``` #### Common Data Format @@ -99,21 +105,15 @@ We have an example of this as `math_data_processor` in [processors.py](../../nem Example (simplified): ```python +# task_spec default_task_spec = TaskDataSpec( task_name="math_default", prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) -task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = defaultdict( - lambda: (default_task_spec, math_hf_data_processor) -) - -# Resolve task_name from dataset or spec -task_spec = data.task_spec -task_name = data.task_name -assert hasattr(data, "processor"), "Dataset must have a processor attribute" -task_data_processors[task_name] = (task_spec, data.processor) +# task_data_processors +task_data_processors = {data.task_name: (data.task_spec, data.processor)} ``` #### Putting It All Together @@ -139,39 +139,34 @@ default_task_spec = TaskDataSpec( system_prompt_file=data_config["system_prompt_file"], ) -# 3) Define default processor mapping -task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = defaultdict( - lambda: (default_task_spec, math_hf_data_processor) -) - -# 4) Load dataset using the helper (built-ins or local/HF datasets) -data = load_response_dataset(data_config, seed) +# 3) Load dataset using the helper (built-ins or local/HF datasets) +data = load_response_dataset(data_config["train"], seed) -# 5) Resolve task spec/name and ensure dataset provides a processor -task_spec = data.task_spec -task_name = data.task_name -assert hasattr(data, "processor"), "Dataset must have a processor attribute" -task_data_processors[task_name] = (task_spec, data.processor) +# 4) Build task_data_processors mapping +task_data_processors = {data.task_name: (data.task_spec, data.processor)} -# 6) Construct processed datasets (train and optional validation) +# 5) Construct processed dataset dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, default_task_spec, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) -val_dataset = ( - AllTaskProcessedDataset( - data.formatted_ds["validation"], + +# 6) Do the same thing for validation dataset if it exists +if data_config["validation"] is not None: + val_data = load_response_dataset(data_config["validation"], seed) + + val_task_data_processors = {val_data.task_name: (val_data.task_spec, val_data.processor)} + + val_dataset = AllTaskProcessedDataset( + val_data.dataset, tokenizer, default_task_spec, - task_data_processors, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - if data.formatted_ds["validation"] - else None -) ``` Ensure you provide a mapping of tasks to their processors so the dataset knows which processor to use when handling samples. diff --git a/docs/guides/sft.md b/docs/guides/sft.md index 81e68d5cc3..724b3b1f4c 100644 --- a/docs/guides/sft.md +++ b/docs/guides/sft.md @@ -37,7 +37,7 @@ SFT datasets in NeMo RL are encapsulated using classes. Each SFT data class is e SFT datasets are expected to follow the HuggingFace chat format. Refer to the [chat dataset document](../design-docs/chat-datasets.md) for details. If your data is not in the correct format, simply write a preprocessing script to convert the data into this format. [response_datasets/squad.py](../../nemo_rl/data/datasets/response_datasets/squad.py) has an example: ```python -def format_squad(data): +def format_data(self, data: dict[str, Any]) -> dict[str, Any]: return { "messages": [ { @@ -76,13 +76,19 @@ By default, NeMo RL has support for [OpenAssistant](../../nemo_rl/data/datasets/ We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with jsonl-formatted response datasets for loading datasets from local path or HuggingFace. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml data: - dataset_name: ResponseDataset - train_data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - val_data_path: - input_key: , default is "input" - output_key: , default is "output" - train_split: , default is None # used for HuggingFace datasets - val_split: , default is None # used for HuggingFace datasets + train: + dataset_name: ResponseDataset + data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) + input_key: , default is "input" + output_key: , default is "output" + split: , default is None # used for HuggingFace datasets + split_validation_size: 0.05 # use 5% of the training data as validation data + validation: + dataset_name: ResponseDataset + data_path: + input_key: , default is "input" + output_key: , default is "output" + split: , default is None # used for HuggingFace datasets ``` ### OpenAI Format Datasets (with Tool Calling Support) @@ -95,14 +101,16 @@ To use an OpenAI format dataset, configure your YAML as follows: ```yaml data: - dataset_name: openai_format - train_data_path: "/path/to/train.jsonl" # Path to training data - val_data_path: "/path/to/val.jsonl" # Path to validation data - chat_key: "messages" # Key for messages in the data (default: "messages") - system_key: null # Key for system message in the data (optional) - system_prompt: null # Default system prompt if not in data (optional) - tool_key: "tools" # Key for tools in the data (default: "tools") - use_preserving_dataset: false # Set to true for heterogeneous tool schemas (see below) + train: + dataset_name: openai_format + data_path: # Path to training data + chat_key: "messages" # Key for messages in the data (default: "messages") + system_key: null # Key for system message in the data (optional) + system_prompt: null # Default system prompt if not in data (optional) + tool_key: "tools" # Key for tools in the data (default: "tools") + use_preserving_dataset: false # Set to true for heterogeneous tool schemas (see below) + validation: + ... ``` #### Data Format From 4b0c360f9f3cd9c709cf834db7821c8d6f4683ea Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 17 Dec 2025 23:08:24 -0800 Subject: [PATCH 18/41] fix unit test Signed-off-by: Yuki Huang --- tests/unit/data/test_data_processor.py | 2 +- tests/unit/data/test_data_shuffle_reproducity.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/tests/unit/data/test_data_processor.py b/tests/unit/data/test_data_processor.py index 7e2fa903f8..343bbe30bb 100644 --- a/tests/unit/data/test_data_processor.py +++ b/tests/unit/data/test_data_processor.py @@ -146,7 +146,7 @@ def test_math_hf_data_processor(tokenizer_name, dataset_cls): task_data_processors[task_name] = (math_task_spec, math_hf_data_processor) dataset = AllTaskProcessedDataset( - dataset=data.formatted_ds["train"], + dataset=data.dataset, tokenizer=tokenizer, default_task_data_spec=math_task_spec, task_data_processors=task_data_processors, diff --git a/tests/unit/data/test_data_shuffle_reproducity.py b/tests/unit/data/test_data_shuffle_reproducity.py index a918648dc6..4074e0d0fa 100644 --- a/tests/unit/data/test_data_shuffle_reproducity.py +++ b/tests/unit/data/test_data_shuffle_reproducity.py @@ -63,7 +63,7 @@ def create_dataloader( task_data_processors[task_name] = (math_task_spec, math_hf_data_processor) dataset = AllTaskProcessedDataset( - dataset=data.formatted_ds["train"].select(range(1000)), + dataset=data.dataset.select(range(1000)), tokenizer=tokenizer, default_task_data_spec=math_task_spec, task_data_processors=task_data_processors, From 6d1be743874f330903b1bbe3cc3fcaad28a24b1a Mon Sep 17 00:00:00 2001 From: Rayen Date: Fri, 19 Dec 2025 13:38:49 +0800 Subject: [PATCH 19/41] split run_sft and run_distillation_math (#1656) Signed-off-by: Rayen --- examples/configs/distillation_math.yaml | 2 + examples/configs/sft.yaml | 5 + examples/run_distillation_math.py | 87 +++++++------- examples/run_sft.py | 144 ++++++++++++------------ nemo_rl/data/interfaces.py | 2 +- nemo_rl/data/processors.py | 51 ++++++++- 6 files changed, 180 insertions(+), 111 deletions(-) diff --git a/examples/configs/distillation_math.yaml b/examples/configs/distillation_math.yaml index 0baebf17fa..e29d3ae402 100644 --- a/examples/configs/distillation_math.yaml +++ b/examples/configs/distillation_math.yaml @@ -210,12 +210,14 @@ teacher: data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len shuffle: true + env_name: "math" # dataset prompt_file: "examples/prompts/cot.txt" system_prompt_file: null train: dataset_name: DeepScaler + split_validation_size: 0 # Not use training data as validation data validation: dataset_name: AIME2024 repeat: 16 diff --git a/examples/configs/sft.yaml b/examples/configs/sft.yaml index 1e93743f80..5c18a6a38a 100644 --- a/examples/configs/sft.yaml +++ b/examples/configs/sft.yaml @@ -182,9 +182,14 @@ data: shuffle: true num_workers: 1 + prompt_file: null + system_prompt_file: null + processor: "sft_processor" + train: dataset_name: "squad" split: "train" + split_validation_size: 0 # Not use training data as validation data validation: dataset_name: "squad" split: "validation" diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index 51fc4b4283..b5d2c75c84 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -14,27 +14,26 @@ import argparse import os -from collections import defaultdict from typing import Any, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import PreTrainedTokenizerBase from nemo_rl.algorithms.distillation import MasterConfig, distillation_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + load_response_dataset, + update_single_dataset_config, +) from nemo_rl.data.interfaces import ( - TaskDataProcessFnCallable, TaskDataSpec, ) -from nemo_rl.data.processors import math_hf_data_processor -from nemo_rl.distributed.ray_actor_environment_registry import ( - get_actor_python_env, -) from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface -from nemo_rl.environments.math_environment import MathEnvironment +from nemo_rl.environments.utils import create_env from nemo_rl.models.generation import configure_generation_config from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -74,57 +73,65 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: + print("\n▶ Setting up envs...") + env_name = data_config["env_name"] + env = create_env(env_name=env_name, env_configs=env_configs) + print("\n▶ Setting up data...") - math_task_spec = TaskDataSpec( - task_name="math", + default_task_spec = TaskDataSpec( + task_name="math_default", prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) # load dataset - data: Any = load_response_dataset(data_config, seed) - task_name = ( - data.task_name if hasattr(data, "task_name") else data.task_spec.task_name - ) - # data processor - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (math_task_spec, math_hf_data_processor)) - ) - task_data_processors[task_name] = (math_task_spec, math_hf_data_processor) - - # setup math environment - math_env = MathEnvironment.options( # type: ignore # it's wrapped with ray.remote - runtime_env={ - "py_executable": get_actor_python_env( - "nemo_rl.environments.math_environment.MathEnvironment" - ), - "env_vars": dict(os.environ), # Pass thru all user environment variables - } - ).remote(env_configs["math"]) + update_single_dataset_config(data_config["train"], data_config) + data: Any = load_response_dataset(data_config["train"], seed) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: env} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, - math_task_spec, + default_task_spec, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset + if data_config["train"]["split_validation_size"] > 0: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if data_config["validation"] is not None: + update_single_dataset_config(data_config["validation"], data_config) + val_data = load_response_dataset(data_config["validation"], seed) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = env + val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + if len(val_data_list) > 0: + val_dataset = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + val_dataset, tokenizer, - math_task_spec, - task_data_processors, + default_task_spec, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: math_env) - task_to_env[task_name] = math_env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: diff --git a/examples/run_sft.py b/examples/run_sft.py index 6323135397..55471a888e 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -16,17 +16,20 @@ import os import pprint from functools import partial -from typing import Any, Callable, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import AutoTokenizer from nemo_rl.algorithms.sft import MasterConfig, setup, sft_train from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.interfaces import DatumSpec, TaskDataSpec -from nemo_rl.data.llm_message_utils import get_formatted_message_log +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + load_response_dataset, + update_single_dataset_config, +) +from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -51,104 +54,107 @@ def parse_args(): # ======================================================= # Data Processing # ======================================================= -def sft_preprocessor( - datum_dict: dict[str, Any], - task_data_spec: TaskDataSpec, - tokenizer, - max_seq_length: int, - idx: int, - add_bos: bool = True, - add_eos: bool = True, - add_generation_prompt: bool = False, - datum_preprocessor: Optional[Callable] = None, -) -> DatumSpec: - """Process a datum dictionary for SFT training.""" - # optional preprocessor - if datum_preprocessor is not None: - datum_dict = datum_preprocessor(datum_dict) - - message_log = get_formatted_message_log( - datum_dict["messages"], - tokenizer, - task_data_spec, - add_bos_token=add_bos, - add_eos_token=add_eos, - add_generation_prompt=add_generation_prompt, - tools=datum_dict.get("tools", None), # Pass tools from data if present - ) - - length = sum(len(m["token_ids"]) for m in message_log) - - loss_multiplier = 1.0 - if length > max_seq_length: - # make smaller and mask out - for message in message_log: - message["token_ids"] = message["token_ids"][ - : min(4, max_seq_length // len(message_log)) - ] - loss_multiplier = 0.0 - - output = { - "message_log": message_log, - "length": length, - "extra_env_info": None, - "loss_multiplier": loss_multiplier, - "idx": idx, - } - return output def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig, seed: int): print("\n▶ Setting up data...") + default_task_spec = TaskDataSpec( + task_name="sft_default", + prompt_file=data_config["prompt_file"], + system_prompt_file=data_config["system_prompt_file"], + ) # load dataset - data = load_response_dataset(data_config, seed) - train_dataset = data.formatted_ds["train"] - val_dataset = data.formatted_ds["validation"] - sft_task_spec = data.task_spec + update_single_dataset_config(data_config["train"], data_config) + train_data = load_response_dataset(data_config["train"], seed) + val_data = load_response_dataset(data_config["validation"], seed) print( - f" ✓ Training and validation datasets loaded with {len(train_dataset)} and {len(val_dataset) if val_dataset else 0} samples, respectively." + f" ✓ Training and validation datasets loaded with {len(train_data.dataset)} and {len(val_data.dataset)} samples, respectively." ) # add preprocessor if needed - datum_preprocessor = None - if "dataset_name" in data_config and data_config["dataset_name"] == "clevr-cogent": + train_datum_preprocessor = None + if ( + "dataset_name" in data_config["train"] + and data_config["train"]["dataset_name"] == "clevr-cogent" + ): from nemo_rl.data.datasets.response_datasets.clevr import ( format_clevr_cogent_dataset, ) - datum_preprocessor = partial(format_clevr_cogent_dataset, return_pil=True) + train_datum_preprocessor = partial(format_clevr_cogent_dataset, return_pil=True) + + val_datum_preprocessor = None + if ( + "dataset_name" in data_config["validation"] + and data_config["validation"]["dataset_name"] == "clevr-cogent" + ): + from nemo_rl.data.datasets.response_datasets.clevr import ( + format_clevr_cogent_dataset, + ) + + val_datum_preprocessor = partial(format_clevr_cogent_dataset, return_pil=True) train_dataset = AllTaskProcessedDataset( - train_dataset, + train_data.dataset, tokenizer, - sft_task_spec, + default_task_spec, partial( - sft_preprocessor, + train_data.processor, add_bos=data_config["add_bos"], add_eos=data_config["add_eos"], add_generation_prompt=data_config["add_generation_prompt"], - datum_preprocessor=datum_preprocessor, + datum_preprocessor=train_datum_preprocessor, ), max_seq_length=data_config["max_input_seq_length"], ) - if val_dataset is not None: - val_dataset = AllTaskProcessedDataset( - val_dataset, - tokenizer, - sft_task_spec, + # setup validation dataset + val_task_data_processors = {} + val_data_list = [] + + # validation dataset from train dataset + if data_config["train"]["split_validation_size"] > 0: + val_data_list.append(train_data.val_dataset) + val_task_data_processors[train_data.task_name] = ( + train_data.task_spec, partial( - sft_preprocessor, + train_data.processor, add_bos=data_config.get("add_bos", True), add_eos=data_config.get("add_eos", True), add_generation_prompt=data_config["add_generation_prompt"], - datum_preprocessor=datum_preprocessor, + datum_preprocessor=train_datum_preprocessor, ), + ) + + # validation dataset from config + if data_config["validation"] is not None: + update_single_dataset_config(data_config["validation"], data_config) + val_data = load_response_dataset(data_config["validation"], seed) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + partial( + val_data.processor, + add_bos=data_config.get("add_bos", True), + add_eos=data_config.get("add_eos", True), + add_generation_prompt=data_config["add_generation_prompt"], + datum_preprocessor=val_datum_preprocessor, + ), + ) + + val_dataset = None + if len(val_data_list) > 0: + val_dataset = concatenate_datasets(val_data_list) + val_dataset = AllTaskProcessedDataset( + val_data.dataset, + tokenizer, + default_task_spec, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - return train_dataset, val_dataset, sft_task_spec + return train_dataset, val_dataset, default_task_spec def main(is_vlm: bool = False): diff --git a/nemo_rl/data/interfaces.py b/nemo_rl/data/interfaces.py index 05f10236c5..bcc7163e13 100644 --- a/nemo_rl/data/interfaces.py +++ b/nemo_rl/data/interfaces.py @@ -32,7 +32,7 @@ class DatumSpec(TypedDict): message_log: LLMMessageLogType length: int # total (concatenated) length of the message tensors - extra_env_info: dict[str, Any] + extra_env_info: Optional[dict[str, Any]] loss_multiplier: float # multiplier for the loss for this datum. 0 to mask out (say the sample is invalid) idx: int task_name: NotRequired[str] diff --git a/nemo_rl/data/processors.py b/nemo_rl/data/processors.py index 235e77c225..99702b2526 100644 --- a/nemo_rl/data/processors.py +++ b/nemo_rl/data/processors.py @@ -14,7 +14,7 @@ """Contains data processors for evaluation.""" -from typing import Any, Dict, cast +from typing import Any, Callable, Dict, Optional, cast import torch from transformers import PreTrainedTokenizerBase @@ -25,6 +25,7 @@ TaskDataProcessFnCallable, TaskDataSpec, ) +from nemo_rl.data.llm_message_utils import get_formatted_message_log TokenizerType = PreTrainedTokenizerBase @@ -132,6 +133,53 @@ def helpsteer3_data_processor( return output +def sft_processor( + datum_dict: dict[str, Any], + task_data_spec: TaskDataSpec, + tokenizer, + max_seq_length: int, + idx: int, + add_bos: bool = True, + add_eos: bool = True, + add_generation_prompt: bool = False, + datum_preprocessor: Optional[Callable] = None, +) -> DatumSpec: + """Process a datum dictionary for SFT training.""" + # optional preprocessor + if datum_preprocessor is not None: + datum_dict = datum_preprocessor(datum_dict) + + message_log = get_formatted_message_log( + datum_dict["messages"], + tokenizer, + task_data_spec, + add_bos_token=add_bos, + add_eos_token=add_eos, + add_generation_prompt=add_generation_prompt, + tools=datum_dict.get("tools", None), # Pass tools from data if present + ) + + length = sum(len(m["token_ids"]) for m in message_log) + + loss_multiplier = 1.0 + if length > max_seq_length: + # make smaller and mask out + for message in message_log: + message["token_ids"] = message["token_ids"][ + : min(4, max_seq_length // len(message_log)) + ] + loss_multiplier = 0.0 + + output: DatumSpec = { + "message_log": message_log, + "length": length, + "extra_env_info": None, + "loss_multiplier": loss_multiplier, + "idx": idx, + } + return output + + # Example of a generic math data processor def math_data_processor( datum_dict: dict[str, Any], @@ -355,6 +403,7 @@ def multichoice_qa_processor( "multichoice_qa_processor": multichoice_qa_processor, "math_data_processor": math_data_processor, "helpsteer3_data_processor": helpsteer3_data_processor, + "sft_processor": sft_processor, }, ) From 3a4c22db3d8fccd8581942a8991c2a8c7d508937 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 19 Dec 2025 00:10:26 -0800 Subject: [PATCH 20/41] update run_grpo_xxx Signed-off-by: Yuki Huang --- examples/configs/grpo_sliding_puzzle.yaml | 2 +- examples/configs/vlm_grpo_3B.yaml | 1 + examples/configs/vlm_grpo_3B_megatron.yaml | 1 + examples/run_grpo.py | 12 +- examples/run_grpo_math.py | 94 +++---- examples/run_grpo_rm.py | 90 +++---- examples/run_vlm_grpo.py | 269 ++++----------------- nemo_rl/data/interfaces.py | 5 +- nemo_rl/data/multimodal_utils.py | 31 +++ nemo_rl/data/processors.py | 155 +++++++++++- 10 files changed, 345 insertions(+), 315 deletions(-) diff --git a/examples/configs/grpo_sliding_puzzle.yaml b/examples/configs/grpo_sliding_puzzle.yaml index 54e03ae524..edfc1096d1 100644 --- a/examples/configs/grpo_sliding_puzzle.yaml +++ b/examples/configs/grpo_sliding_puzzle.yaml @@ -77,4 +77,4 @@ logger: run_name: "grpo-dev-sliding_puzzle" gpu_monitoring: collection_interval: 10 # How often to collect GPU usage metrics (in seconds) - flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds) \ No newline at end of file + flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds) diff --git a/examples/configs/vlm_grpo_3B.yaml b/examples/configs/vlm_grpo_3B.yaml index 6e6e37cff6..7784584d64 100644 --- a/examples/configs/vlm_grpo_3B.yaml +++ b/examples/configs/vlm_grpo_3B.yaml @@ -237,6 +237,7 @@ data: # dataset prompt_file: "examples/prompts/clevr_cogent_cot.txt" system_prompt_file: null + processor: "vlm_hf_data_processor" env_name: "clevr-cogent" train: dataset_name: clevr-cogent diff --git a/examples/configs/vlm_grpo_3B_megatron.yaml b/examples/configs/vlm_grpo_3B_megatron.yaml index 4e86fe556d..dbdfac9f12 100644 --- a/examples/configs/vlm_grpo_3B_megatron.yaml +++ b/examples/configs/vlm_grpo_3B_megatron.yaml @@ -188,6 +188,7 @@ data: # dataset prompt_file: examples/prompts/clevr_cogent_cot.txt system_prompt_file: null + processor: "vlm_hf_data_processor" env_name: "clevr-cogent" train: dataset_name: clevr-cogent diff --git a/examples/run_grpo.py b/examples/run_grpo.py index 837c3e5672..e36834ea8f 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -29,9 +29,7 @@ load_response_dataset, update_single_dataset_config, ) -from nemo_rl.data.interfaces import ( - TaskDataSpec, -) +from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface from nemo_rl.environments.utils import create_env @@ -102,8 +100,8 @@ def setup_data( val_task_to_env = {} val_data_list = [] - # validation dataset from train dataset - if data_config["train"]["split_validation_size"] > 0: + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: val_data_list.append(data.val_dataset) val_task_data_processors = task_data_processors.copy() val_task_to_env = task_to_env.copy() @@ -121,9 +119,9 @@ def setup_data( val_dataset = None if len(val_data_list) > 0: - val_dataset = concatenate_datasets(val_data_list) + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - val_dataset, + merged_val_data, tokenizer, default_task_spec, val_task_data_processors, diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index bf790080d9..a39d9490d9 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -15,27 +15,24 @@ import argparse import os import pprint -from collections import defaultdict from typing import Any, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import PreTrainedTokenizerBase from nemo_rl.algorithms.grpo import MasterConfig, grpo_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.interfaces import ( - TaskDataProcessFnCallable, - TaskDataSpec, -) -from nemo_rl.data.processors import math_hf_data_processor -from nemo_rl.distributed.ray_actor_environment_registry import ( - get_actor_python_env, +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + load_response_dataset, + update_single_dataset_config, ) +from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface -from nemo_rl.environments.math_environment import MathEnvironment +from nemo_rl.environments.utils import create_env from nemo_rl.models.generation import configure_generation_config from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -73,58 +70,65 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: + print("\n▶ Setting up envs...") + env_name = data_config["env_name"] + env = create_env(env_name=env_name, env_configs=env_configs) + print("\n▶ Setting up data...") - math_task_spec = TaskDataSpec( - task_name="math", + default_task_spec = TaskDataSpec( + task_name="math_default", prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) - # load dataset - data: Any = load_response_dataset(data_config, seed) - task_name = ( - data.task_name if hasattr(data, "task_name") else data.task_spec.task_name - ) - - # data processor - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (math_task_spec, math_hf_data_processor)) - ) - task_data_processors[task_name] = (math_task_spec, math_hf_data_processor) - - # setup math environment - math_env = MathEnvironment.options( # type: ignore # it's wrapped with ray.remote - runtime_env={ - "py_executable": get_actor_python_env( - "nemo_rl.environments.math_environment.MathEnvironment" - ), - "env_vars": dict(os.environ), # Pass thru all user environment variables - } - ).remote(env_configs["math"]) + # setup train dataset + update_single_dataset_config(data_config["train"], data_config) + data = load_response_dataset(data_config["train"], seed) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: env} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, - math_task_spec, + default_task_spec, # default task data spec to process any values not specified in the task-specific specs task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if data_config["validation"] is not None: + update_single_dataset_config(data_config["validation"], data_config) + val_data = load_response_dataset(data_config["validation"], seed) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = env + + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + merged_val_data, tokenizer, - math_task_spec, - task_data_processors, + default_task_spec, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: math_env) - task_to_env[task_name] = math_env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index b36e34bf7e..a343366312 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -15,25 +15,24 @@ import argparse import os import pprint -from collections import defaultdict from typing import Any, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import PreTrainedTokenizerBase from nemo_rl.algorithms.grpo import MasterConfig, grpo_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.interfaces import ( - TaskDataProcessFnCallable, - TaskDataSpec, +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + load_response_dataset, + update_single_dataset_config, ) -from nemo_rl.data.processors import math_hf_data_processor -from nemo_rl.distributed.ray_actor_environment_registry import get_actor_python_env +from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface -from nemo_rl.environments.reward_model_environment import RewardModelEnvironment +from nemo_rl.environments.utils import create_env from nemo_rl.models.generation import configure_generation_config from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -77,56 +76,65 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: - print("\n▶ Setting up data...") - # load dataset - data: Any = load_response_dataset(data_config, seed) - task_name = ( - data.task_name if hasattr(data, "task_name") else data.task_spec.task_name - ) + print("\n▶ Setting up envs...") + env_name = data_config["env_name"] + env = create_env(env_name=env_name, env_configs=env_configs) - reward_model_task_spec = TaskDataSpec( - task_name=task_name, + print("\n▶ Setting up data...") + default_task_spec = TaskDataSpec( + task_name="math_default", prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) - # data processor - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (reward_model_task_spec, math_hf_data_processor)) - ) - task_data_processors[task_name] = (reward_model_task_spec, math_hf_data_processor) - reward_model_env = RewardModelEnvironment.options( # type: ignore # it's wrapped with ray.remote - runtime_env={ - "py_executable": get_actor_python_env( - "nemo_rl.environments.reward_model_environment.RewardModelEnvironment" - ), - "env_vars": dict(os.environ), # Pass thru all user environment variables - } - ).remote(env_configs["reward_model"]) + # setup train dataset + update_single_dataset_config(data_config["train"], data_config) + data = load_response_dataset(data_config["train"], seed) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: env} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, - reward_model_task_spec, + default_task_spec, # default task data spec to process any values not specified in the task-specific specs task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if data_config["validation"] is not None: + update_single_dataset_config(data_config["validation"], data_config) + val_data = load_response_dataset(data_config["validation"], seed) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = env + + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + merged_val_data, tokenizer, - reward_model_task_spec, - task_data_processors, + default_task_spec, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: reward_model_env) - task_to_env[task_name] = reward_model_env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index 5e8cb1ef0c..e90889808f 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -13,36 +13,23 @@ # limitations under the License. import argparse -import base64 import os import pprint -from collections import defaultdict -from io import BytesIO from typing import Any, Optional -import requests +from datasets import concatenate_datasets from omegaconf import OmegaConf -from PIL import Image from transformers import AutoProcessor from nemo_rl.algorithms.grpo import MasterConfig, grpo_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.datasets.response_datasets.clevr import format_clevr_cogent_dataset -from nemo_rl.data.datasets.response_datasets.geometry3k import format_geometry3k_dataset -from nemo_rl.data.datasets.response_datasets.refcoco import format_refcoco_dataset -from nemo_rl.data.interfaces import ( - DatumSpec, - LLMMessageLogType, - TaskDataProcessFnCallable, - TaskDataSpec, -) -from nemo_rl.data.multimodal_utils import ( - PackedTensor, - get_dim_to_pack_along, - get_multimodal_keys_from_processor, +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + load_response_dataset, + update_single_dataset_config, ) +from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.ray_actor_environment_registry import ( get_actor_python_env, ) @@ -68,168 +55,8 @@ def parse_args() -> tuple[argparse.Namespace, list[str]]: # =============================================================================== -# VLM Data Processor +# Data Processor # =============================================================================== - - -def resolve_to_image(image_path_or_image: str | Image.Image) -> Image.Image: - """Resolve the image path to a PIL.Image object. - - image_path can be either: - - path to local file - - url to image - - base64 encoded image - """ - if isinstance(image_path_or_image, Image.Image): - return image_path_or_image - - if image_path_or_image.startswith(("http://", "https://")): - # Handle URL - response = requests.get(image_path_or_image) - response.raise_for_status() - return Image.open(BytesIO(response.content)).convert("RGB") - elif image_path_or_image.startswith("data:"): - # Handle base64 encoded image - # Format: ... - header, encoded = image_path_or_image.split(",", 1) - image_data = base64.b64decode(encoded) - return Image.open(BytesIO(image_data)).convert("RGB") - else: - # Handle local file path - return Image.open(image_path_or_image).convert("RGB") - - -def hf_data_processor( - datum_dict: dict[str, Any], - task_data_spec: TaskDataSpec, - processor: AutoProcessor, - max_seq_length: int, - idx: int, -) -> DatumSpec: - """Process a datum dictionary (directly loaded from response_datasets/.py) into a DatumSpec for the VLM Environment.""" - # depending on the task, format the data differently - if task_data_spec.task_name == "clevr-cogent": - datum_dict = format_clevr_cogent_dataset(datum_dict) - elif task_data_spec.task_name == "refcoco": - datum_dict = format_refcoco_dataset(datum_dict) - elif task_data_spec.task_name == "geometry3k": - datum_dict = format_geometry3k_dataset(datum_dict) - else: - raise ValueError(f"No data processor for task {task_data_spec.task_name}") - - user_message = datum_dict["messages"] - problem = user_message[0]["content"] - extra_env_info = {"ground_truth": user_message[1]["content"]} - - message_log: LLMMessageLogType = [] - ### only one round of interaction is assumed, this can easily be extended to a conversational setting - user_message = {"role": "user", "content": []} - # - images = [] - if isinstance(problem, list): - for content in problem: - # for image, video, just append it - # for text, format the prompt to the problem - if content["type"] != "text": - user_message["content"].append(content) - if content["type"] == "image": - images.append(content["image"]) - else: - raise ValueError(f"Unsupported content type: {content['type']}") - elif content["type"] == "text": - user_message["content"].append( - { - "type": "text", - "text": task_data_spec.prompt.format(content["text"]) - if task_data_spec.prompt - else content["text"], - } - ) - else: - # conversation consists of a text-only message - user_message["content"] = task_data_spec.prompt.format(problem) - - images = [resolve_to_image(image) for image in images] - - # get formatted user message - if hasattr(processor, "conversation_preprocessor"): - user_message_for_chat_template = processor.conversation_preprocessor( - user_message - ) - else: - user_message_for_chat_template = user_message - - # this is the string-tokenized conversation template for the generation policy (for vllm) - string_formatted_dialog = processor.apply_chat_template( - [user_message_for_chat_template], - tokenize=False, - add_generation_prompt=True, - ) - - # this is the id-tokenized and image processed conversation template for the policy - message: dict = processor.apply_chat_template( - [user_message], - tokenize=True, - add_generation_prompt=True, - return_tensors="pt", - return_dict=True, - ) - - # add this for backward compatibility - user_message["token_ids"] = message["input_ids"][0] - # add all keys and values to the user message, and the list of keys - multimodal_keys = get_multimodal_keys_from_processor(processor) - for key in multimodal_keys: - if key in message: - user_message[key] = PackedTensor( - message[key], dim_to_pack=get_dim_to_pack_along(processor, key) - ) - - # specifically for gemma, we need to add token_type_ids to the user message as a sequence-type value - if "token_type_ids" in message: - user_message["token_type_ids"] = message["token_type_ids"][0] - - ### append to user message - message_log.append(user_message) - - length = sum(len(m["token_ids"]) for m in message_log) - loss_multiplier = 1.0 - if length >= max_seq_length: - # Treat truncated messages as text only - vllm_kwargs = { - "vllm_content": None, - "vllm_images": [], - } - - # make smaller and mask out - for chat_message in message_log: - chat_message["token_ids"] = chat_message["token_ids"][ - : min(4, max_seq_length // len(message_log)) - ] - for key, value in chat_message.items(): - if isinstance(value, PackedTensor): - chat_message[key] = PackedTensor.empty_like(value) - loss_multiplier = 0.0 - else: - # get the prompt content! (use this for vllm-backend that needs formatted dialog and list of images) for the entire conversation - # add images for vllm serving - vllm_kwargs = { - "vllm_content": string_formatted_dialog, - "vllm_images": images, - } - - output: DatumSpec = { - "message_log": message_log, - "length": length, - "extra_env_info": extra_env_info, - "loss_multiplier": loss_multiplier, - "idx": idx, - "task_name": task_data_spec.task_name, - **vllm_kwargs, - } - return output - - def setup_data( processor: AutoProcessor, data_config: DataConfig, @@ -241,31 +68,9 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: - """This function will create a TaskSpec, DatumSpec, and connect the two. - - task_spec contains the task name as well as prompt and system prompt modifiers that can be used by data processor - """ - print("\n▶ Setting up data...") - - # load dataset - # TODO @yukih: currently seed is not used for vlm datasets - data: Any = load_response_dataset(data_config, seed) - - task_name = data.task_name - vlm_task_spec = TaskDataSpec( - task_name=task_name, - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - - # add data processor for different tasks - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (vlm_task_spec, hf_data_processor)) - ) - task_data_processors[task_name] = (vlm_task_spec, hf_data_processor) - + print("\n▶ Setting up envs...") env_name = data_config["env_name"] - vlm_env = VLMEnvironment.options( # type: ignore # it's wrapped with ray.remote + env = VLMEnvironment.options( # type: ignore # it's wrapped with ray.remote runtime_env={ "py_executable": get_actor_python_env( "nemo_rl.environments.vlm_environment.VLMEnvironment" @@ -274,29 +79,61 @@ def setup_data( } ).remote(env_configs[env_name]) + print("\n▶ Setting up data...") + default_task_spec = TaskDataSpec( + task_name="vlm_default", + prompt_file=data_config["prompt_file"], + system_prompt_file=data_config["system_prompt_file"], + ) + + # setup train dataset + update_single_dataset_config(data_config["train"], data_config) + data = load_response_dataset(data_config["train"], seed) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: env} + dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, processor, - vlm_task_spec, + default_task_spec, # default task data spec to process any values not specified in the task-specific specs task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if data_config["validation"] is not None: + update_single_dataset_config(data_config["validation"], data_config) + val_data = load_response_dataset(data_config["validation"], seed) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = env + + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + merged_val_data, processor, - vlm_task_spec, - task_data_processors, + default_task_spec, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: vlm_env) - task_to_env[task_name] = vlm_env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: diff --git a/nemo_rl/data/interfaces.py b/nemo_rl/data/interfaces.py index bcc7163e13..207b702bda 100644 --- a/nemo_rl/data/interfaces.py +++ b/nemo_rl/data/interfaces.py @@ -18,8 +18,11 @@ import torch from transformers.tokenization_utils_base import PreTrainedTokenizerBase +from nemo_rl.data.multimodal_utils import PackedTensor + # OpenAI-API-like message log, but every messsage may contain associated tensors (i.e. tokenized strings and logprobs) in addition to the original "content" string LLMMessageLogType = list[dict[str, Union[str, torch.Tensor]]] +VLMMessageLogType = list[dict[str, Union[str, torch.Tensor, PackedTensor]]] # Flattened message log where all tensors and data are concatenated together for a conversation # Converts a conversation from list-of-turns format to key-value format with concatenated tensors @@ -30,7 +33,7 @@ class DatumSpec(TypedDict): - message_log: LLMMessageLogType + message_log: LLMMessageLogType | VLMMessageLogType length: int # total (concatenated) length of the message tensors extra_env_info: Optional[dict[str, Any]] loss_multiplier: float # multiplier for the loss for this datum. 0 to mask out (say the sample is invalid) diff --git a/nemo_rl/data/multimodal_utils.py b/nemo_rl/data/multimodal_utils.py index 0da507acc7..918c589ad1 100644 --- a/nemo_rl/data/multimodal_utils.py +++ b/nemo_rl/data/multimodal_utils.py @@ -12,9 +12,13 @@ # See the License for the specific language governing permissions and # limitations under the License. +import base64 +from io import BytesIO from typing import Optional, Union +import requests import torch +from PIL import Image from transformers import PreTrainedTokenizerBase @@ -179,3 +183,30 @@ def get_dim_to_pack_along(processor, key: str) -> int: return 1 # return zero by default return 0 + + +def resolve_to_image(image_path_or_image: str | Image.Image) -> Image.Image: + """Resolve the image path to a PIL.Image object. + + image_path can be either: + - path to local file + - url to image + - base64 encoded image + """ + if isinstance(image_path_or_image, Image.Image): + return image_path_or_image + + if image_path_or_image.startswith(("http://", "https://")): + # Handle URL + response = requests.get(image_path_or_image) + response.raise_for_status() + return Image.open(BytesIO(response.content)).convert("RGB") + elif image_path_or_image.startswith("data:"): + # Handle base64 encoded image + # Format: ... + header, encoded = image_path_or_image.split(",", 1) + image_data = base64.b64decode(encoded) + return Image.open(BytesIO(image_data)).convert("RGB") + else: + # Handle local file path + return Image.open(image_path_or_image).convert("RGB") diff --git a/nemo_rl/data/processors.py b/nemo_rl/data/processors.py index 99702b2526..24a0b1c0ed 100644 --- a/nemo_rl/data/processors.py +++ b/nemo_rl/data/processors.py @@ -17,13 +17,14 @@ from typing import Any, Callable, Dict, Optional, cast import torch -from transformers import PreTrainedTokenizerBase +from transformers import AutoProcessor, PreTrainedTokenizerBase from nemo_rl.data.interfaces import ( DatumSpec, LLMMessageLogType, TaskDataProcessFnCallable, TaskDataSpec, + VLMMessageLogType, ) from nemo_rl.data.llm_message_utils import get_formatted_message_log @@ -308,6 +309,151 @@ def math_hf_data_processor( return output +def vlm_hf_data_processor( + datum_dict: dict[str, Any], + task_data_spec: TaskDataSpec, + processor: AutoProcessor, + max_seq_length: int, + idx: int, +) -> DatumSpec: + """Process a datum dictionary (directly loaded from response_datasets/.py) into a DatumSpec for the VLM Environment.""" + from nemo_rl.data.datasets.response_datasets.clevr import ( + format_clevr_cogent_dataset, + ) + from nemo_rl.data.datasets.response_datasets.geometry3k import ( + format_geometry3k_dataset, + ) + from nemo_rl.data.datasets.response_datasets.refcoco import format_refcoco_dataset + from nemo_rl.data.multimodal_utils import ( + PackedTensor, + get_dim_to_pack_along, + get_multimodal_keys_from_processor, + resolve_to_image, + ) + + # depending on the task, format the data differently + if datum_dict["task_name"] == "clevr-cogent": + datum_dict = format_clevr_cogent_dataset(datum_dict) + elif datum_dict["task_name"] == "refcoco": + datum_dict = format_refcoco_dataset(datum_dict) + elif datum_dict["task_name"] == "geometry3k": + datum_dict = format_geometry3k_dataset(datum_dict) + else: + raise ValueError(f"No data processor for task {datum_dict['task_name']}") + + user_message = datum_dict["messages"] + problem = user_message[0]["content"] + extra_env_info = {"ground_truth": user_message[1]["content"]} + + message_log: VLMMessageLogType = [] + ### only one round of interaction is assumed, this can easily be extended to a conversational setting + user_message: dict[str, Any] = {"role": "user", "content": []} + # + images = [] + if isinstance(problem, list): + for content in problem: + # for image, video, just append it + # for text, format the prompt to the problem + if content["type"] != "text": + user_message["content"].append(content) + if content["type"] == "image": + images.append(content["image"]) + else: + raise ValueError(f"Unsupported content type: {content['type']}") + elif content["type"] == "text": + user_message["content"].append( + { + "type": "text", + "text": task_data_spec.prompt.format(content["text"]) + if task_data_spec.prompt + else content["text"], + } + ) + else: + # conversation consists of a text-only message + user_message["content"] = task_data_spec.prompt.format(problem) + + images = [resolve_to_image(image) for image in images] + + # get formatted user message + if hasattr(processor, "conversation_preprocessor"): + user_message_for_chat_template = processor.conversation_preprocessor( + user_message + ) + else: + user_message_for_chat_template = user_message + + # this is the string-tokenized conversation template for the generation policy (for vllm) + string_formatted_dialog = processor.apply_chat_template( + [user_message_for_chat_template], + tokenize=False, + add_generation_prompt=True, + ) + + # this is the id-tokenized and image processed conversation template for the policy + message: dict = processor.apply_chat_template( + [user_message], + tokenize=True, + add_generation_prompt=True, + return_tensors="pt", + return_dict=True, + ) + + # add this for backward compatibility + user_message["token_ids"] = message["input_ids"][0] + # add all keys and values to the user message, and the list of keys + multimodal_keys = get_multimodal_keys_from_processor(processor) + for key in multimodal_keys: + if key in message: + user_message[key] = PackedTensor( + message[key], dim_to_pack=get_dim_to_pack_along(processor, key) + ) + + # specifically for gemma, we need to add token_type_ids to the user message as a sequence-type value + if "token_type_ids" in message: + user_message["token_type_ids"] = message["token_type_ids"][0] + + ### append to user message + message_log.append(user_message) + + length = sum(len(m["token_ids"]) for m in message_log) + loss_multiplier = 1.0 + if length >= max_seq_length: + # Treat truncated messages as text only + vllm_kwargs = { + "vllm_content": None, + "vllm_images": [], + } + + # make smaller and mask out + for chat_message in message_log: + chat_message["token_ids"] = chat_message["token_ids"][ + : min(4, max_seq_length // len(message_log)) + ] + for key, value in chat_message.items(): + if isinstance(value, PackedTensor): + chat_message[key] = PackedTensor.empty_like(value) + loss_multiplier = 0.0 + else: + # get the prompt content! (use this for vllm-backend that needs formatted dialog and list of images) for the entire conversation + # add images for vllm serving + vllm_kwargs = { + "vllm_content": string_formatted_dialog, + "vllm_images": images, + } + + output: DatumSpec = { + "message_log": message_log, + "length": length, + "extra_env_info": extra_env_info, + "loss_multiplier": loss_multiplier, + "idx": idx, + "task_name": datum_dict["task_name"], + **vllm_kwargs, # pyrefly: ignore[bad-unpacking] + } + return output + + def _construct_multichoice_prompt( prompt: str, question: str, options: dict[str, str] ) -> str: @@ -339,7 +485,7 @@ def multichoice_qa_processor( if "subject" in datum_dict: extra_env_info.update({"subject": datum_dict["subject"]}) - message_log = [] + message_log: LLMMessageLogType = [] # system prompt if task_data_spec.system_prompt: @@ -399,11 +545,12 @@ def multichoice_qa_processor( Dict[str, TaskDataProcessFnCallable], { "default": math_hf_data_processor, + "helpsteer3_data_processor": helpsteer3_data_processor, + "math_data_processor": math_data_processor, "math_hf_data_processor": math_hf_data_processor, "multichoice_qa_processor": multichoice_qa_processor, - "math_data_processor": math_data_processor, - "helpsteer3_data_processor": helpsteer3_data_processor, "sft_processor": sft_processor, + "vlm_hf_data_processor": vlm_hf_data_processor, }, ) From c4309e6dad0baa7ba0b9b263836d95173c4ec68d Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 19 Dec 2025 01:10:11 -0800 Subject: [PATCH 21/41] unify Signed-off-by: Yuki Huang --- examples/configs/distillation_math.yaml | 1 - examples/configs/sft.yaml | 1 - examples/run_distillation_math.py | 18 ++--- examples/run_grpo.py | 2 + examples/run_grpo_math.py | 2 + examples/run_grpo_rm.py | 2 + examples/run_sft.py | 87 ++++++++----------------- examples/run_vlm_grpo.py | 2 + nemo_rl/data/processors.py | 11 ++-- 9 files changed, 52 insertions(+), 74 deletions(-) diff --git a/examples/configs/distillation_math.yaml b/examples/configs/distillation_math.yaml index e29d3ae402..f992f7f03c 100644 --- a/examples/configs/distillation_math.yaml +++ b/examples/configs/distillation_math.yaml @@ -217,7 +217,6 @@ data: system_prompt_file: null train: dataset_name: DeepScaler - split_validation_size: 0 # Not use training data as validation data validation: dataset_name: AIME2024 repeat: 16 diff --git a/examples/configs/sft.yaml b/examples/configs/sft.yaml index 5c18a6a38a..e33f2649d9 100644 --- a/examples/configs/sft.yaml +++ b/examples/configs/sft.yaml @@ -189,7 +189,6 @@ data: train: dataset_name: "squad" split: "train" - split_validation_size: 0 # Not use training data as validation data validation: dataset_name: "squad" split: "validation" diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index b5d2c75c84..2552409d86 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -84,27 +84,28 @@ def setup_data( system_prompt_file=data_config["system_prompt_file"], ) - # load dataset + # setup train dataset update_single_dataset_config(data_config["train"], data_config) - data: Any = load_response_dataset(data_config["train"], seed) + data = load_response_dataset(data_config["train"], seed) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} dataset = AllTaskProcessedDataset( data.dataset, tokenizer, - default_task_spec, + default_task_spec, # default task data spec to process any values not specified in the task-specific specs task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") # setup validation dataset val_task_data_processors = {} val_task_to_env = {} val_data_list = [] - # validation dataset from train dataset - if data_config["train"]["split_validation_size"] > 0: + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: val_data_list.append(data.val_dataset) val_task_data_processors = task_data_processors.copy() val_task_to_env = task_to_env.copy() @@ -120,16 +121,17 @@ def setup_data( ) val_task_to_env[val_data.task_name] = env - val_dataset: Optional[AllTaskProcessedDataset] = None + val_dataset = None if len(val_data_list) > 0: - val_dataset = concatenate_datasets(val_data_list) + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - val_dataset, + merged_val_data, tokenizer, default_task_spec, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") return dataset, val_dataset, task_to_env, val_task_to_env diff --git a/examples/run_grpo.py b/examples/run_grpo.py index e36834ea8f..2eedf4f3c0 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -94,6 +94,7 @@ def setup_data( task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") # setup validation dataset val_task_data_processors = {} @@ -127,6 +128,7 @@ def setup_data( val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") return dataset, val_dataset, task_to_env, val_task_to_env diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index a39d9490d9..d093405ed3 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -94,6 +94,7 @@ def setup_data( task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") # setup validation dataset val_task_data_processors = {} @@ -127,6 +128,7 @@ def setup_data( val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") return dataset, val_dataset, task_to_env, val_task_to_env diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index a343366312..26492f11ef 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -100,6 +100,7 @@ def setup_data( task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") # setup validation dataset val_task_data_processors = {} @@ -133,6 +134,7 @@ def setup_data( val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") return dataset, val_dataset, task_to_env, val_task_to_env diff --git a/examples/run_sft.py b/examples/run_sft.py index 55471a888e..909bcb1469 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -64,97 +64,64 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig, seed: int): system_prompt_file=data_config["system_prompt_file"], ) - # load dataset + # setup train dataset update_single_dataset_config(data_config["train"], data_config) - train_data = load_response_dataset(data_config["train"], seed) - val_data = load_response_dataset(data_config["validation"], seed) - print( - f" ✓ Training and validation datasets loaded with {len(train_data.dataset)} and {len(val_data.dataset)} samples, respectively." + data = load_response_dataset(data_config["train"], seed) + data_processor = partial( + data.processor, + add_bos=data_config["add_bos"], + add_eos=data_config["add_eos"], + add_generation_prompt=data_config["add_generation_prompt"], ) + task_data_processors = {data.task_name: (data.task_spec, data_processor)} - # add preprocessor if needed - train_datum_preprocessor = None - if ( - "dataset_name" in data_config["train"] - and data_config["train"]["dataset_name"] == "clevr-cogent" - ): - from nemo_rl.data.datasets.response_datasets.clevr import ( - format_clevr_cogent_dataset, - ) - - train_datum_preprocessor = partial(format_clevr_cogent_dataset, return_pil=True) - - val_datum_preprocessor = None - if ( - "dataset_name" in data_config["validation"] - and data_config["validation"]["dataset_name"] == "clevr-cogent" - ): - from nemo_rl.data.datasets.response_datasets.clevr import ( - format_clevr_cogent_dataset, - ) - - val_datum_preprocessor = partial(format_clevr_cogent_dataset, return_pil=True) - - train_dataset = AllTaskProcessedDataset( - train_data.dataset, + dataset = AllTaskProcessedDataset( + data.dataset, tokenizer, default_task_spec, - partial( - train_data.processor, - add_bos=data_config["add_bos"], - add_eos=data_config["add_eos"], - add_generation_prompt=data_config["add_generation_prompt"], - datum_preprocessor=train_datum_preprocessor, - ), + task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") # setup validation dataset val_task_data_processors = {} val_data_list = [] - # validation dataset from train dataset - if data_config["train"]["split_validation_size"] > 0: - val_data_list.append(train_data.val_dataset) - val_task_data_processors[train_data.task_name] = ( - train_data.task_spec, - partial( - train_data.processor, - add_bos=data_config.get("add_bos", True), - add_eos=data_config.get("add_eos", True), - add_generation_prompt=data_config["add_generation_prompt"], - datum_preprocessor=train_datum_preprocessor, - ), - ) + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() # validation dataset from config if data_config["validation"] is not None: update_single_dataset_config(data_config["validation"], data_config) val_data = load_response_dataset(data_config["validation"], seed) val_data_list.append(val_data.dataset) + val_data_processor = partial( + val_data.processor, + add_bos=data_config["add_bos"], + add_eos=data_config["add_eos"], + add_generation_prompt=data_config["add_generation_prompt"], + ) val_task_data_processors[val_data.task_name] = ( val_data.task_spec, - partial( - val_data.processor, - add_bos=data_config.get("add_bos", True), - add_eos=data_config.get("add_eos", True), - add_generation_prompt=data_config["add_generation_prompt"], - datum_preprocessor=val_datum_preprocessor, - ), + val_data_processor, ) val_dataset = None if len(val_data_list) > 0: - val_dataset = concatenate_datasets(val_data_list) + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - val_data.dataset, + merged_val_data, tokenizer, default_task_spec, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") - return train_dataset, val_dataset, default_task_spec + return dataset, val_dataset, default_task_spec def main(is_vlm: bool = False): diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index e90889808f..be7996d4a7 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -99,6 +99,7 @@ def setup_data( task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") # setup validation dataset val_task_data_processors = {} @@ -132,6 +133,7 @@ def setup_data( val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") return dataset, val_dataset, task_to_env, val_task_to_env diff --git a/nemo_rl/data/processors.py b/nemo_rl/data/processors.py index 24a0b1c0ed..b9c4a1253a 100644 --- a/nemo_rl/data/processors.py +++ b/nemo_rl/data/processors.py @@ -14,7 +14,7 @@ """Contains data processors for evaluation.""" -from typing import Any, Callable, Dict, Optional, cast +from typing import Any, Dict, cast import torch from transformers import AutoProcessor, PreTrainedTokenizerBase @@ -143,12 +143,15 @@ def sft_processor( add_bos: bool = True, add_eos: bool = True, add_generation_prompt: bool = False, - datum_preprocessor: Optional[Callable] = None, ) -> DatumSpec: """Process a datum dictionary for SFT training.""" # optional preprocessor - if datum_preprocessor is not None: - datum_dict = datum_preprocessor(datum_dict) + if datum_dict["task_name"] == "clevr-cogent": + from nemo_rl.data.datasets.response_datasets.clevr import ( + format_clevr_cogent_dataset, + ) + + datum_dict = format_clevr_cogent_dataset(datum_dict) message_log = get_formatted_message_log( datum_dict["messages"], From dd6ca568cfe47f62c8065085c595c5274c741c33 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 19 Dec 2025 06:57:16 -0800 Subject: [PATCH 22/41] fix rebase Signed-off-by: Yuki Huang --- .../data/datasets/test_response_dataset.py | 93 +++---------------- 1 file changed, 14 insertions(+), 79 deletions(-) diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 3bfdec5b1a..23c7923066 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -16,6 +16,7 @@ import tempfile import pytest +from datasets import Dataset from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data.datasets import load_response_dataset @@ -23,16 +24,21 @@ from nemo_rl.data.datasets.response_datasets.geometry3k import format_geometry3k_dataset -def create_sample_data(input_key, output_key): +def create_sample_data(input_key, output_key, is_save_to_disk=False): data = [ {input_key: "Hello", output_key: "Hi there!"}, {input_key: "How are you?", output_key: "I'm good, thanks!"}, ] - # Create temporary files for train and validation data - with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f: - json.dump(data, f) - data_path = f.name + # Create temporary dataset file + if is_save_to_disk: + data_path = tempfile.mktemp() + dataset = Dataset.from_list(data) + dataset.save_to_disk(data_path) + else: + with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f: + json.dump(data, f) + data_path = f.name return data_path @@ -47,9 +53,10 @@ def tokenizer(): @pytest.mark.parametrize( "input_key,output_key", [("input", "output"), ("question", "answer")] ) -def test_response_dataset(input_key, output_key, tokenizer): +@pytest.mark.parametrize("is_save_to_disk", [True, False]) +def test_response_dataset(input_key, output_key, is_save_to_disk, tokenizer): # load the dataset - data_path = create_sample_data(input_key, output_key) + data_path = create_sample_data(input_key, output_key, is_save_to_disk) data_config = { "dataset_name": "ResponseDataset", "data_path": data_path, @@ -102,78 +109,6 @@ def test_helpsteer3_dataset(): assert first_example["response"][0]["content"][:20] == "Yes, you are correct" -def test_load_dataset_saved_with_save_to_disk(): - """Test loading a dataset that was saved using HuggingFace's save_to_disk(). - - This tests the fix for datasets that already have a 'messages' column, - which should be preserved without applying add_messages_key again. - """ - from datasets import Dataset - - # Create a dataset with 'messages' column already present - train_data = [ - { - "messages": [ - {"role": "user", "content": "What is 2+2?"}, - {"role": "assistant", "content": "4"}, - ] - }, - { - "messages": [ - {"role": "user", "content": "What is the capital of France?"}, - {"role": "assistant", "content": "Paris"}, - ] - }, - ] - val_data = [ - { - "messages": [ - {"role": "user", "content": "What is 3+3?"}, - {"role": "assistant", "content": "6"}, - ] - }, - ] - - with tempfile.TemporaryDirectory() as tmpdir: - # Create HF datasets and save using save_to_disk - train_dataset = Dataset.from_list(train_data) - val_dataset = Dataset.from_list(val_data) - - train_path = f"{tmpdir}/train" - val_path = f"{tmpdir}/val" - - train_dataset.save_to_disk(train_path) - val_dataset.save_to_disk(val_path) - - # Load using load_response_dataset - data_config = { - "dataset_name": "ResponseDataset", - "train_data_path": train_path, - "val_data_path": val_path, - } - dataset = load_response_dataset(data_config) - - # Verify the dataset loaded correctly - assert "train" in dataset.formatted_ds - assert "validation" in dataset.formatted_ds - assert len(dataset.formatted_ds["train"]) == 2 - assert len(dataset.formatted_ds["validation"]) == 1 - - # Verify messages are preserved correctly - first_train_example = dataset.formatted_ds["train"][0] - assert "messages" in first_train_example - assert len(first_train_example["messages"]) == 2 - assert first_train_example["messages"][0]["role"] == "user" - assert first_train_example["messages"][0]["content"] == "What is 2+2?" - assert first_train_example["messages"][1]["role"] == "assistant" - assert first_train_example["messages"][1]["content"] == "4" - - # Verify validation data - first_val_example = dataset.formatted_ds["validation"][0] - assert first_val_example["messages"][0]["content"] == "What is 3+3?" - assert first_val_example["messages"][1]["content"] == "6" - - def test_open_assistant_dataset(): # load the dataset data_config = { From 124fc9e6e1311929910d2a0b2684a2a62b4768af Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 19 Dec 2025 07:29:46 -0800 Subject: [PATCH 23/41] use common func to support split_train_validation Signed-off-by: Yuki Huang --- nemo_rl/data/__init__.py | 2 ++ nemo_rl/data/datasets/raw_dataset.py | 26 +++++++++++++------ .../data/datasets/response_datasets/oasst.py | 9 ++----- .../response_datasets/openmathinstruct2.py | 9 ++----- .../response_datasets/response_dataset.py | 9 ++----- .../data/datasets/response_datasets/tulu3.py | 9 ++----- 6 files changed, 28 insertions(+), 36 deletions(-) diff --git a/nemo_rl/data/__init__.py b/nemo_rl/data/__init__.py index 09137ab982..a4e1c0c95b 100644 --- a/nemo_rl/data/__init__.py +++ b/nemo_rl/data/__init__.py @@ -24,6 +24,7 @@ class ResponseDatasetConfig(TypedDict): prompt_file: NotRequired[str | None] system_prompt_file: NotRequired[str | None] env_name: NotRequired[str] + processor: NotRequired[str] # remove once processor is refactored download_dir: NotRequired[str] split_validation_size: NotRequired[float] @@ -47,6 +48,7 @@ class DataConfig(TypedDict): prompt_file: NotRequired[str | None] system_prompt_file: NotRequired[str | None] env_name: NotRequired[str] + processor: NotRequired[str] # remove once processor is refactored # TODO: remove NotRequired once preference dataset is refactored train: NotRequired[ResponseDatasetConfig] validation: NotRequired[ResponseDatasetConfig | None] diff --git a/nemo_rl/data/datasets/raw_dataset.py b/nemo_rl/data/datasets/raw_dataset.py index e63217a469..f316fd0c1c 100644 --- a/nemo_rl/data/datasets/raw_dataset.py +++ b/nemo_rl/data/datasets/raw_dataset.py @@ -12,18 +12,28 @@ # See the License for the specific language governing permissions and # limitations under the License. +from datasets import Dataset + +from nemo_rl.data import ResponseDatasetConfig from nemo_rl.data.interfaces import TaskDataProcessFnCallable, TaskDataSpec from nemo_rl.data.processors import PROCESSOR_REGISTRY class RawDataset: - def __init__(self, data_config: dict, seed: int = 42): - self.data_config: dict = data_config - self.seed: int = seed - self.task_name: str | None = None - self.processor: TaskDataProcessFnCallable | None = None - self.task_spec: TaskDataSpec | None = None - raise NotImplementedError("__init__ is not implemented") + # change to ResponseDatasetConfig | PreferenceDatasetConfig once preference dataset is refactored + data_config: ResponseDatasetConfig + dataset: Dataset + val_dataset: Dataset | None + processor: TaskDataProcessFnCallable + task_spec: TaskDataSpec + + def split_train_validation(self, test_size: float, seed: int): + if test_size > 0: + split_dataset = self.dataset.train_test_split( + test_size=test_size, seed=seed + ) + self.dataset = split_dataset["train"] + self.val_dataset = split_dataset["test"] def set_processor(self): processor_name = ( @@ -36,7 +46,7 @@ def set_processor(self): ) self.processor = PROCESSOR_REGISTRY[processor_name] - def set_task_spec(self, data_config: dict): + def set_task_spec(self, data_config: ResponseDatasetConfig): self.data_config = data_config system_prompt_file = self.data_config.get("system_prompt_file", None) prompt_file = self.data_config.get("prompt_file", None) diff --git a/nemo_rl/data/datasets/response_datasets/oasst.py b/nemo_rl/data/datasets/response_datasets/oasst.py index 1cde74b734..20d5e81c56 100644 --- a/nemo_rl/data/datasets/response_datasets/oasst.py +++ b/nemo_rl/data/datasets/response_datasets/oasst.py @@ -109,11 +109,6 @@ def __init__( self.dataset = get_data_records(all_objs, task_name=self.task_name) self.dataset = Dataset.from_list(self.dataset) - # use only when current dataset is used for both training and validation + # `self.val_dataset` is used (not None) only when current dataset is used for both training and validation self.val_dataset = None - if split_validation_size > 0: - split_dataset = self.dataset.train_test_split( - test_size=split_validation_size, seed=seed - ) - self.dataset = split_dataset["train"] - self.val_dataset = split_dataset["test"] + self.split_train_validation(split_validation_size, seed) diff --git a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py index 6c78ce2096..d8bcebe396 100644 --- a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py +++ b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py @@ -53,14 +53,9 @@ def __init__( remove_columns=self.dataset.column_names, ) - # use only when current dataset is used for both training and validation + # `self.val_dataset` is used (not None) only when current dataset is used for both training and validation self.val_dataset = None - if split_validation_size > 0: - split_dataset = self.dataset.train_test_split( - test_size=split_validation_size, seed=seed - ) - self.dataset = split_dataset["train"] - self.val_dataset = split_dataset["test"] + self.split_train_validation(split_validation_size, seed) def format_data(self, data: dict[str, Any]) -> dict[str, Any]: return { diff --git a/nemo_rl/data/datasets/response_datasets/response_dataset.py b/nemo_rl/data/datasets/response_datasets/response_dataset.py index b4666bac00..05c98b0399 100644 --- a/nemo_rl/data/datasets/response_datasets/response_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/response_dataset.py @@ -65,14 +65,9 @@ def __init__( "task_name", [self.task_name] * len(self.dataset) ) - # use only when current dataset is used for both training and validation + # `self.val_dataset` is used (not None) only when current dataset is used for both training and validation self.val_dataset = None - if split_validation_size > 0: - split_dataset = self.dataset.train_test_split( - test_size=split_validation_size, seed=seed - ) - self.dataset = split_dataset["train"] - self.val_dataset = split_dataset["test"] + self.split_train_validation(split_validation_size, seed) def format_data(self, data: dict[str, Any]) -> dict[str, Any]: return { diff --git a/nemo_rl/data/datasets/response_datasets/tulu3.py b/nemo_rl/data/datasets/response_datasets/tulu3.py index db23ddc3e3..30efa63f1a 100644 --- a/nemo_rl/data/datasets/response_datasets/tulu3.py +++ b/nemo_rl/data/datasets/response_datasets/tulu3.py @@ -55,14 +55,9 @@ def __init__( remove_columns=["id", "source"], ) - # use only when current dataset is used for both training and validation + # `self.val_dataset` is used (not None) only when current dataset is used for both training and validation self.val_dataset = None - if split_validation_size > 0: - split_dataset = self.dataset.train_test_split( - test_size=split_validation_size, seed=seed - ) - self.dataset = split_dataset["train"] - self.val_dataset = split_dataset["test"] + self.split_train_validation(split_validation_size, seed) def format_data(self, data: dict[str, Any]) -> dict[str, Any]: messages = data["messages"] From 8448eaec24c920c543c590eec3e44e271c569853 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 19 Dec 2025 07:50:06 -0800 Subject: [PATCH 24/41] update doc for split_validation_size Signed-off-by: Yuki Huang --- docs/guides/grpo.md | 12 +++++++++++- docs/guides/sft.md | 12 +++++++++++- 2 files changed, 22 insertions(+), 2 deletions(-) diff --git a/docs/guides/grpo.md b/docs/guides/grpo.md index 6383fb5c6a..4f7a4fa948 100755 --- a/docs/guides/grpo.md +++ b/docs/guides/grpo.md @@ -38,7 +38,8 @@ To support this, we need to know: #### Dataset -By default, NeMo RL has support for [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py) and [DeepScaler](../../nemo_rl/data/datasets/response_datasets/deepscaler.py) datasets. Both of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. +By default, NeMo RL has some built-in supported datasets (e.g., [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py), etc.), you can see the full list [here](../../nemo_rl/data/datasets/response_datasets/__init__.py). +All of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with JSONL-formatted response datasets for loading datasets from local path or Hugging Face. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml @@ -58,6 +59,15 @@ data: split: , default is None # used for HuggingFace datasets ``` +We support using a single dataset for both train and validation by using `split_validation_size` to set the ratio of validation. +[OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py), [Tulu3SftMixtureDataset](../../nemo_rl/data/datasets/response_datasets/tulu3.py) are supported for this feature. +If you want to support this feature for your custom datasets or other built-in datasets, you can simply add the code to the dataset like [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py). +```python +# `self.val_dataset` is used (not None) only when current dataset is used for both training and validation +self.val_dataset = None +self.split_train_validation(split_validation_size, seed) +``` + #### Common Data Format We define a [DatumSpec](../../nemo_rl/data/interfaces.py) that holds all relevant information for each training example: diff --git a/docs/guides/sft.md b/docs/guides/sft.md index 724b3b1f4c..cf395b2d80 100644 --- a/docs/guides/sft.md +++ b/docs/guides/sft.md @@ -71,7 +71,8 @@ NeMo RL SFT uses HuggingFace chat templates to format the individual examples. T custom_template: "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer: '}}{%- elif message['role'] == 'assistant' %}{{message['content'].strip()}}{%- endif %}{% endfor %}" ``` -By default, NeMo RL has support for [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py) and [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py) datasets. All of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. +By default, NeMo RL has some built-in supported datasets (e.g., [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py), etc.), you can see the full list [here](../../nemo_rl/data/datasets/response_datasets/__init__.py). +All of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with jsonl-formatted response datasets for loading datasets from local path or HuggingFace. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml @@ -91,6 +92,15 @@ data: split: , default is None # used for HuggingFace datasets ``` +We support using a single dataset for both train and validation by using `split_validation_size` to set the ratio of validation. +[OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py), [Tulu3SftMixtureDataset](../../nemo_rl/data/datasets/response_datasets/tulu3.py) are supported for this feature. +If you want to support this feature for your custom datasets or other built-in datasets, you can simply add the code to the dataset like [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py). +```python +# `self.val_dataset` is used (not None) only when current dataset is used for both training and validation +self.val_dataset = None +self.split_train_validation(split_validation_size, seed) +``` + ### OpenAI Format Datasets (with Tool Calling Support) NeMo RL also supports datasets in the OpenAI conversation format, which is commonly used for chat models and function calling. This format is particularly useful for training models with tool-use capabilities. From 6c7e282d66901a0bb0630010c98be5548cbbe423 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 19 Dec 2025 23:19:48 -0800 Subject: [PATCH 25/41] unify docstring Signed-off-by: Yuki Huang --- nemo_rl/data/datasets/raw_dataset.py | 1 + nemo_rl/data/datasets/response_datasets/aime24.py | 7 ++++++- nemo_rl/data/datasets/response_datasets/clevr.py | 11 ++++++----- .../data/datasets/response_datasets/dapo_math.py | 3 ++- .../data/datasets/response_datasets/deepscaler.py | 3 ++- .../data/datasets/response_datasets/geometry3k.py | 11 ++++++----- .../data/datasets/response_datasets/helpsteer3.py | 7 ++++++- nemo_rl/data/datasets/response_datasets/oasst.py | 14 ++++++++------ .../response_datasets/openmathinstruct2.py | 15 +++++++++------ .../data/datasets/response_datasets/refcoco.py | 13 +++++++------ .../response_datasets/response_dataset.py | 10 +++++----- nemo_rl/data/datasets/response_datasets/squad.py | 6 ++++++ nemo_rl/data/datasets/response_datasets/tulu3.py | 15 ++++++++------- 13 files changed, 72 insertions(+), 44 deletions(-) diff --git a/nemo_rl/data/datasets/raw_dataset.py b/nemo_rl/data/datasets/raw_dataset.py index f316fd0c1c..c795480e49 100644 --- a/nemo_rl/data/datasets/raw_dataset.py +++ b/nemo_rl/data/datasets/raw_dataset.py @@ -23,6 +23,7 @@ class RawDataset: # change to ResponseDatasetConfig | PreferenceDatasetConfig once preference dataset is refactored data_config: ResponseDatasetConfig dataset: Dataset + # `val_dataset` is used only when current dataset is used for both training and validation val_dataset: Dataset | None processor: TaskDataProcessFnCallable task_spec: TaskDataSpec diff --git a/nemo_rl/data/datasets/response_datasets/aime24.py b/nemo_rl/data/datasets/response_datasets/aime24.py index 83675ca97c..cb9c7b0395 100644 --- a/nemo_rl/data/datasets/response_datasets/aime24.py +++ b/nemo_rl/data/datasets/response_datasets/aime24.py @@ -20,8 +20,13 @@ class AIME2024Dataset(RawDataset): + """Simple wrapper around the AIME2024 dataset with train split. + + Args: + repeat: Number of times to repeat the dataset, default is 16 + """ + def __init__(self, repeat: int = 16, **kwargs) -> None: - """Initialize the AIME2024 dataset with train split.""" self.task_name = "AIME2024" # load from huggingface diff --git a/nemo_rl/data/datasets/response_datasets/clevr.py b/nemo_rl/data/datasets/response_datasets/clevr.py index a23204a82c..775b67e8b2 100644 --- a/nemo_rl/data/datasets/response_datasets/clevr.py +++ b/nemo_rl/data/datasets/response_datasets/clevr.py @@ -60,12 +60,13 @@ def format_clevr_cogent_dataset( class CLEVRCoGenTDataset(RawDataset): - def __init__(self, split: str = "train", **kwargs): - """Simple wrapper around the CLEVR-CoGenT dataset. + """Simple wrapper around the CLEVR-CoGenT dataset. + + Args: + split: Split name for the dataset, default is "train" + """ - Args: - split: The split of the dataset to use. - """ + def __init__(self, split: str = "train", **kwargs): # train, valA, and valB are supported splits. SPLIT_TO_HF_NAME = { "train": "MMInstruction/Clevr_CoGenT_TrainA_70K_Complex", diff --git a/nemo_rl/data/datasets/response_datasets/dapo_math.py b/nemo_rl/data/datasets/response_datasets/dapo_math.py index 66de63c8ff..096c6fe835 100644 --- a/nemo_rl/data/datasets/response_datasets/dapo_math.py +++ b/nemo_rl/data/datasets/response_datasets/dapo_math.py @@ -20,8 +20,9 @@ class DAPOMath17KDataset(RawDataset): + """Simple wrapper around the DAPO Math 17K dataset with train split.""" + def __init__(self, **kwargs) -> None: - """Initialize the DAPO Math 17K dataset with train split.""" self.task_name = "DAPOMath17K" # load from huggingface diff --git a/nemo_rl/data/datasets/response_datasets/deepscaler.py b/nemo_rl/data/datasets/response_datasets/deepscaler.py index 4000d92bef..7f6189281d 100644 --- a/nemo_rl/data/datasets/response_datasets/deepscaler.py +++ b/nemo_rl/data/datasets/response_datasets/deepscaler.py @@ -20,8 +20,9 @@ class DeepScalerDataset(RawDataset): + """Simple wrapper around the DeepScaler dataset with train split.""" + def __init__(self, **kwargs) -> None: - """Initialize the DeepScaler dataset with train split.""" self.task_name = "DeepScaler" # load from huggingface diff --git a/nemo_rl/data/datasets/response_datasets/geometry3k.py b/nemo_rl/data/datasets/response_datasets/geometry3k.py index 480ea7e2fb..429decb522 100644 --- a/nemo_rl/data/datasets/response_datasets/geometry3k.py +++ b/nemo_rl/data/datasets/response_datasets/geometry3k.py @@ -54,12 +54,13 @@ def format_geometry3k_dataset( class Geometry3KDataset(RawDataset): - def __init__(self, split: str = "train", **kwargs): - """Simple wrapper around the Geometry3K dataset. + """Simple wrapper around the Geometry3K dataset. + + Args: + split: Split name for the dataset, default is "train" + """ - Args: - split: The split of the dataset to use. - """ + def __init__(self, split: str = "train", **kwargs): # train, validation, and test are supported splits. assert split in ["train", "validation", "test"], ( f"Invalid split: {split}. Please use 'train' or 'validation' or 'test'." diff --git a/nemo_rl/data/datasets/response_datasets/helpsteer3.py b/nemo_rl/data/datasets/response_datasets/helpsteer3.py index 3bfaf86d73..af7e00be05 100644 --- a/nemo_rl/data/datasets/response_datasets/helpsteer3.py +++ b/nemo_rl/data/datasets/response_datasets/helpsteer3.py @@ -21,8 +21,13 @@ class HelpSteer3Dataset(RawDataset): + """Simple wrapper around the HelpSteer3 dataset with preference subset. + + Args: + split: Split name for the dataset, default is "train" + """ + def __init__(self, split: str = "train", **kwargs): - """Initialize the HelpSteer3 dataset with preference split.""" self.task_name = "HelpSteer3" # load from huggingface diff --git a/nemo_rl/data/datasets/response_datasets/oasst.py b/nemo_rl/data/datasets/response_datasets/oasst.py index 20d5e81c56..e76316e77e 100644 --- a/nemo_rl/data/datasets/response_datasets/oasst.py +++ b/nemo_rl/data/datasets/response_datasets/oasst.py @@ -87,12 +87,14 @@ def get_data_records(objs, task_name: str = "oasst"): class OasstDataset(RawDataset): - def __init__( - self, - split_validation_size: float = 0.05, - seed: int = 42, - **kwargs, - ): + """Simple wrapper around the OASST dataset. + + Args: + split_validation_size: Size of the validation data, default is 0.05 + seed: Seed for train/validation split when split_validation_size > 0, default is 42 + """ + + def __init__(self, split_validation_size: float = 0.05, seed: int = 42, **kwargs): self.task_name = "oasst" # load from huggingface diff --git a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py index d8bcebe396..1b2c651997 100644 --- a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py +++ b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py @@ -20,6 +20,15 @@ class OpenMathInstruct2Dataset(RawDataset): + """Simple wrapper around the OpenMathInstruct2 dataset. + + Args: + output_key: Key for the output text, default is "expected_answer" + split: Split name for the dataset, default is "train_1M" + split_validation_size: Size of the validation data, default is 0.05 + seed: Seed for train/validation split when split_validation_size > 0, default is 42 + """ + def __init__( self, output_key: str = "expected_answer", @@ -28,12 +37,6 @@ def __init__( seed: int = 42, **kwargs, ): - """Initialize the OpenMathInstruct2 dataset with train/validation split. - - Args: - seed: Random seed for reproducible splitting - test_size: Proportion of data to use for validation (0.0-1.0) - """ # train, train_1M, train_2M, and train_5M are supported splits. if split not in ["train", "train_1M", "train_2M", "train_5M"]: raise ValueError( diff --git a/nemo_rl/data/datasets/response_datasets/refcoco.py b/nemo_rl/data/datasets/response_datasets/refcoco.py index d2f6e6f57f..a8630e2c6b 100644 --- a/nemo_rl/data/datasets/response_datasets/refcoco.py +++ b/nemo_rl/data/datasets/response_datasets/refcoco.py @@ -164,18 +164,19 @@ def format_refcoco_dataset( class RefCOCODataset(RawDataset): + """Simple wrapper around the RefCOCO dataset. + + Args: + split: Split name for the dataset, default is "train" + download_dir: Directory to download the dataset to, default is "./coco_images" + """ + def __init__( self, split: str = "train", download_dir: str = "./coco_images", **kwargs, ): - """Simple wrapper around the RefCOCO dataset. - - Args: - split: The split of the dataset to use. - download_dir: The directory to download the dataset to - """ # train and validation are supported splits. SPLIT_TO_IMAGE_URL = { "train": "http://images.cocodataset.org/zips/train2014.zip", diff --git a/nemo_rl/data/datasets/response_datasets/response_dataset.py b/nemo_rl/data/datasets/response_datasets/response_dataset.py index 05c98b0399..3fa6acfa7a 100644 --- a/nemo_rl/data/datasets/response_datasets/response_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/response_dataset.py @@ -29,12 +29,12 @@ class ResponseDataset(RawDataset): } Args: - data_path: Path to the JSON file containing training data - input_key: Key for the input text - output_key: Key for the output text - split: Split name for the training data, used for HuggingFace datasets, default is None + data_path: Path to the dataset JSON file + input_key: Key for the input text, default is "input" + output_key: Key for the output text, default is "output" + split: Optional split name for the dataset, used for HuggingFace datasets split_validation_size: Size of the validation data, default is 0 - seed: Seed for training/validation split when split_validation_size > 0, default is 42 + seed: Seed for train/validation split when split_validation_size > 0, default is 42 """ def __init__( diff --git a/nemo_rl/data/datasets/response_datasets/squad.py b/nemo_rl/data/datasets/response_datasets/squad.py index 1556e55e80..dba0f7c243 100644 --- a/nemo_rl/data/datasets/response_datasets/squad.py +++ b/nemo_rl/data/datasets/response_datasets/squad.py @@ -20,6 +20,12 @@ class SquadDataset(RawDataset): + """Simple wrapper around the squad dataset. + + Args: + split: Split name for the dataset, default is "train" + """ + def __init__(self, split: str = "train", **kwargs) -> None: self.task_name = "squad" diff --git a/nemo_rl/data/datasets/response_datasets/tulu3.py b/nemo_rl/data/datasets/response_datasets/tulu3.py index 30efa63f1a..1e27d25a2f 100644 --- a/nemo_rl/data/datasets/response_datasets/tulu3.py +++ b/nemo_rl/data/datasets/response_datasets/tulu3.py @@ -20,6 +20,14 @@ class Tulu3SftMixtureDataset(RawDataset): + """Simple wrapper around the Tulu3 SFT mixture dataset with train split. + + Args: + split_validation_size: Size of the validation data, default is 0.05 + seed: Seed for train/validation split when split_validation_size > 0, default is 42 + max_samples: Optional maximum number of samples to use from the dataset + """ + def __init__( self, split_validation_size: float = 0.05, @@ -27,13 +35,6 @@ def __init__( max_samples: int | None = None, **kwargs, ) -> None: - """Initialize the Tulu3 SFT mixture dataset. - - Args: - seed: Random seed for train/validation split - test_size: Proportion of data to use for validation (0.0-1.0) - max_samples: Optional maximum number of samples to use from the dataset - """ print( "WARNING: For reproducible experiments, preprocess the dataset once and define your own HfDataset subclass that directly uses the preprocessed datasets." ) From 283e25baac23e91cb9ae401621c5a58ef47403da Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 19 Dec 2025 23:34:12 -0800 Subject: [PATCH 26/41] fix task_name in oai dataset Signed-off-by: Yuki Huang --- nemo_rl/data/datasets/response_datasets/oai_format_dataset.py | 2 +- tests/unit/data/datasets/test_oai_format_dataset.py | 1 + 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py b/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py index a0f4748031..674940e88e 100644 --- a/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py @@ -189,7 +189,7 @@ def format_data(self, data: dict[str, Any]) -> dict[str, Any]: assert messages[-1]["role"] == "assistant" # Preserve tools if they exist in the data - result = {"messages": messages} + result = {"messages": messages, "task_name": self.task_name} if self.tool_key and self.tool_key in data: result["tools"] = data[self.tool_key] diff --git a/tests/unit/data/datasets/test_oai_format_dataset.py b/tests/unit/data/datasets/test_oai_format_dataset.py index 197ece16c9..ef7b000c59 100644 --- a/tests/unit/data/datasets/test_oai_format_dataset.py +++ b/tests/unit/data/datasets/test_oai_format_dataset.py @@ -94,6 +94,7 @@ def test_message_formatting(sample_data, tokenizer): # check the first example first_example = dataset.dataset[0] + assert "task_name" in first_example assert first_example["messages"][0]["role"] == "system" assert first_example["messages"][0]["content"] == "You are a helpful assistant." assert first_example["messages"][1]["role"] == "user" From ad17ec3cb541b10f6d8c8380b59e7022ccdad184 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 19 Dec 2025 22:45:55 -0800 Subject: [PATCH 27/41] fix functional test Signed-off-by: Yuki Huang --- tests/functional/distillation.sh | 4 +++- tests/functional/distillation_megatron.sh | 4 +++- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/tests/functional/distillation.sh b/tests/functional/distillation.sh index 19cb71252c..195e3fc3a5 100644 --- a/tests/functional/distillation.sh +++ b/tests/functional/distillation.sh @@ -37,7 +37,9 @@ uv run coverage run -a --data-file=$PROJECT_ROOT/tests/.coverage --source=$PROJE distillation.max_val_samples=16 \ distillation.val_batch_size=8 \ distillation.val_period=3 \ - data.dataset_name=OpenMathInstruct-2 \ + data.train.dataset_name=OpenMathInstruct-2 \ + ++data.train.split_validation_size=0.05 \ + data.validation=null \ loss_fn.zero_outside_topk=true \ logger.tensorboard_enabled=true \ logger.log_dir=$LOG_DIR \ diff --git a/tests/functional/distillation_megatron.sh b/tests/functional/distillation_megatron.sh index b56ea672fb..d40516d939 100644 --- a/tests/functional/distillation_megatron.sh +++ b/tests/functional/distillation_megatron.sh @@ -40,7 +40,9 @@ uv run coverage run -a --data-file=$PROJECT_ROOT/tests/.coverage --source=$PROJE distillation.max_val_samples=16 \ distillation.val_batch_size=8 \ distillation.val_period=3 \ - data.dataset_name=OpenMathInstruct-2 \ + data.train.dataset_name=OpenMathInstruct-2 \ + ++data.train.split_validation_size=0.05 \ + data.validation=null \ loss_fn.zero_outside_topk=false \ logger.tensorboard_enabled=true \ logger.log_dir=$LOG_DIR \ From 5227c8e072df03c6d12d35acd3470d3c1643c43e Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Mon, 22 Dec 2025 21:40:07 -0800 Subject: [PATCH 28/41] use inherit Signed-off-by: Yuki Huang --- examples/configs/grpo_math_1B_megatron.yaml | 7 ------- 1 file changed, 7 deletions(-) diff --git a/examples/configs/grpo_math_1B_megatron.yaml b/examples/configs/grpo_math_1B_megatron.yaml index 2b7d4473b4..bb51d50942 100644 --- a/examples/configs/grpo_math_1B_megatron.yaml +++ b/examples/configs/grpo_math_1B_megatron.yaml @@ -160,13 +160,6 @@ policy: gpu_memory_utilization: 0.6 max_model_len: ${policy.max_total_sequence_length} -data: - max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len - prompt_file: "examples/prompts/cot.txt" - system_prompt_file: null - dataset_name: "OpenMathInstruct-2" - shuffle: true - env: math: num_workers: 8 From bd95440a6223e399e96c5793af40dd2b223f7338 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 7 Jan 2026 21:51:28 -0800 Subject: [PATCH 29/41] address doc comments Signed-off-by: Yuki Huang --- docs/guides/grpo.md | 12 ++++++------ docs/guides/sft.md | 8 ++++---- 2 files changed, 10 insertions(+), 10 deletions(-) diff --git a/docs/guides/grpo.md b/docs/guides/grpo.md index 4f7a4fa948..735f54285e 100755 --- a/docs/guides/grpo.md +++ b/docs/guides/grpo.md @@ -38,7 +38,7 @@ To support this, we need to know: #### Dataset -By default, NeMo RL has some built-in supported datasets (e.g., [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py), etc.), you can see the full list [here](../../nemo_rl/data/datasets/response_datasets/__init__.py). +By default, NeMo RL has some built-in supported datasets (e.g., [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py), etc.). You can see the full list [here](../../nemo_rl/data/datasets/response_datasets/__init__.py). All of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with JSONL-formatted response datasets for loading datasets from local path or Hugging Face. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: @@ -59,7 +59,7 @@ data: split: , default is None # used for HuggingFace datasets ``` -We support using a single dataset for both train and validation by using `split_validation_size` to set the ratio of validation. +We support using a single dataset for both train and validation by using `split_validation_size` to set the validation ratio. [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py), [Tulu3SftMixtureDataset](../../nemo_rl/data/datasets/response_datasets/tulu3.py) are supported for this feature. If you want to support this feature for your custom datasets or other built-in datasets, you can simply add the code to the dataset like [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py). ```python @@ -105,7 +105,7 @@ We have an example of this as `math_data_processor` in [processors.py](../../nem - task_name (unique task identifier): - Determines which processor, env, prompts, and dataset to use for this task. - - Currently, we support a single dataset and a single environment. Therefore, task_name equals the dataset_name in config (i.e., config.data.dataset_name). + - Currently, we support a single dataset and a single environment. Therefore, task_name equals the dataset_name in the config (i.e., config.data.dataset_name). - task_spec (TaskDataSpec): - Specifies per-task system prompt and prompt (with defaults applied from a global spec when unspecified). - task_data_processors: @@ -340,7 +340,7 @@ $$ \text{token-mult-prob-error} = \frac{1}{n}\sum_{i=1}^{n\text{(tokens)}}\exp\left(\left\|\text{log-train-fwk}_i - \text{logprobs-inference-fwk}_i\right\|\right) $$ -Intuitively, this measures the average multiplicative probability error for sampled tokens, where samples are drawn as $x \sim \pi_{\text{inference-framework}}$. The purpose of this is to highlight any obvious sampling errors or discrepencies between the inference backend and training framework. If it trends upward steeply over the course of training past $\sim 1-2\%$, there is usually a problem with how your weights are being updated. If very spiky, it can indicate a bug in the inference framework or buggy weight refitting. +Intuitively, this measures the average multiplicative probability error for sampled tokens, where samples are drawn as $x \sim \pi_{\text{inference-framework}}$. The purpose of this is to highlight any obvious sampling errors or discrepancies between the inference backend and training framework. If it trends upward steeply over the course of training past $\sim 1-2\%$, there is usually a problem with how your weights are being updated. If these metrics are very spiky, they can indicate a bug in the inference framework or buggy weight refitting. ### KL Divergence Error This feature is controlled by the following metrics: @@ -351,7 +351,7 @@ This feature is controlled by the following metrics: * `js_divergence_error` or (Jensen–Shannon divergence): $(D_{\text{KL}}(P_{policy} || P_{m}) + D_{\text{KL}}(P_{gen} || P_{m})) / 2$, where $P_{m} = (P_{policy} + P_{gen}) / 2$ - uses the mean mixture distribution as reference -According to the paper [When Speed Kills Stability: Demystifying RL Collapse from the Training-Inference Mismatch](https://yingru.notion.site/When-Speed-Kills-Stability-Demystifying-RL-Collapse-from-the-Training-Inference-Mismatch-271211a558b7808d8b12d403fd15edda), `gen_kl_error` was introduced (referred to as `vllm-kl` in the paper) as the key metric to measure mismatch between policy and generation distribution. Empirically, the mismatch is approximately 1e-3, and the divergence is larger for low-probability tokens as predicted by the generation inference engine (like vLLM). +According to the paper [When Speed Kills Stability: Demystifying RL Collapse from the Training-Inference Mismatch](https://yingru.notion.site/When-Speed-Kills-Stability-Demystifying-RL-Collapse-from-the-Training-Inference-Mismatch-271211a558b7808d8b12d403fd15edda), `gen_kl_error` was introduced (referred to as `vllm-kl` in the paper) as the key metric to measure the mismatch between the policy and generation distributions. Empirically, the mismatch is approximately 1e-3, and the divergence is larger for low-probability tokens as predicted by the generation inference engine (like vLLM). The three divergence metrics provide complementary perspectives on distribution mismatch. For example: @@ -376,7 +376,7 @@ This feature is controlled by the parameter `sampling_importance_ratio`. It adju This is simply $\frac{1}{|T|}\sum_{t \in \text{tokens}}\text{exp}(\text{log}(\pi_{\text{training}}(t)) - \text{log}(\pi_{\text{inference}}(t)))$ -Similar to [Multiplicative Token Probability Error](#multiplicative-token-probability-error), this is a measure of how far off your inference backend is from your training framework. However, this metric is meant to find the bias in that error instead of loosely the variance as it does not take the absolute value of the error. With some noise, this should hover around 1. +Similar to [Multiplicative Token Probability Error](#multiplicative-token-probability-error), this is a measure of how far off your inference backend is from your training framework. However, this metric is meant to find the bias in that error, rather than the variance, as it does not take the absolute value of the error. With some noise, this should hover around 1. This metric is always calculated and the per-token version (without the mean) is used in the loss function when [Importance Sampling Correction](#importance-sampling-correction) is enabled. diff --git a/docs/guides/sft.md b/docs/guides/sft.md index cf395b2d80..be78a69cbb 100644 --- a/docs/guides/sft.md +++ b/docs/guides/sft.md @@ -56,7 +56,7 @@ def format_data(self, data: dict[str, Any]) -> dict[str, Any]: } ``` -NeMo RL SFT uses HuggingFace chat templates to format the individual examples. Three types of chat templates are supported, which can be configured via `tokenizer.chat_template` in your yaml config (see [sft.yaml](../../examples/configs/sft.yaml) for an example): +NeMo RL SFT uses Hugging Face chat templates to format the individual examples. Three types of chat templates are supported, which can be configured using the `tokenizer.chat_template` in your YAML config (see [sft.yaml](../../examples/configs/sft.yaml) for an example): 1. Apply the tokenizer's default chat template. To use the tokenizer's default, either omit `tokenizer.chat_template` from the config altogether, or set `tokenizer.chat_template="default"`. 2. Use a "passthrough" template which simply concatenates all messages. This is desirable if the chat template has been applied to your dataset as an offline preprocessing step. In this case, you should set `tokenizer.chat_template` to None as follows: @@ -64,7 +64,7 @@ NeMo RL SFT uses HuggingFace chat templates to format the individual examples. T tokenizer: chat_template: NULL ``` -3. Use a custom template: If you would like to use a custom template, create a string template in [jinja format](https://huggingface.co/docs/transformers/v4.34.0/en/chat_templating#how-do-i-create-a-chat-template), and add that string to the config. For example, +3. Use a custom template: If you would like to use a custom template, create a string template in [Jinja format](https://huggingface.co/docs/transformers/v4.34.0/en/chat_templating#how-do-i-create-a-chat-template), and add that string to the config. For example, ```yaml tokenizer: @@ -74,7 +74,7 @@ NeMo RL SFT uses HuggingFace chat templates to format the individual examples. T By default, NeMo RL has some built-in supported datasets (e.g., [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py), etc.), you can see the full list [here](../../nemo_rl/data/datasets/response_datasets/__init__.py). All of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. -We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with jsonl-formatted response datasets for loading datasets from local path or HuggingFace. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: +We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with JSONL-formatted response datasets for loading datasets from local path or Hugging Face. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml data: train: @@ -187,7 +187,7 @@ NeMo RL supports LoRA (Low-Rank Adaptation) for parameter-efficient fine-tuning. Notes: - LoRA is supported with DTensor v2 and Megatron backends. Uses the DTensor backend by default. DTensor v1 does not support LoRA (ensure `policy.dtensor_cfg._v2=true` when using DTensor). -- Triton kernels are only used in the DTensor v2 path. For TP > 1, Automodel currently does not support Triton kernels (see note below). +- Triton kernels are only used in the DTensor v2 path. For `tensor_parallel_size > 1`, Automodel currently does not support Triton kernels (see note below). ### DTensor Configuration Parameters From 4f8c8590bee840440393f708e592ff14efbd46ad Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 7 Jan 2026 23:37:56 -0800 Subject: [PATCH 30/41] remove test comments Signed-off-by: Yuki Huang --- nemo_rl/data/datasets/response_datasets/__init__.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 831639682f..36ddd341dc 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -55,7 +55,6 @@ def load_response_dataset(data_config: ResponseDatasetConfig, seed: int = 42): ) # for rl training elif dataset_name == "OpenMathInstruct-2": - # TODO: also test after SFT updated print("Loading nvidia/OpenMathInstruct2Dataset for training and validation") base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) elif dataset_name == "DeepScaler": @@ -69,9 +68,7 @@ def load_response_dataset(data_config: ResponseDatasetConfig, seed: int = 42): elif dataset_name == "DAPOMathAIME2024": base_dataset: Any = DAPOMathAIME2024Dataset(**data_config) # for vlm training - # TODO: test after GRPO-VLM updated elif dataset_name == "clevr-cogent": - # TODO: also test after SFT updated base_dataset: Any = CLEVRCoGenTDataset(**data_config) elif dataset_name == "refcoco": base_dataset: Any = RefCOCODataset(**data_config) From 2f48681eafe6efc30746d9fa09d6b303301f3342 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Thu, 8 Jan 2026 00:46:41 -0800 Subject: [PATCH 31/41] format order Signed-off-by: Yuki Huang --- nemo_rl/data/datasets/response_datasets/__init__.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 36ddd341dc..0f8cdf802d 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -55,7 +55,6 @@ def load_response_dataset(data_config: ResponseDatasetConfig, seed: int = 42): ) # for rl training elif dataset_name == "OpenMathInstruct-2": - print("Loading nvidia/OpenMathInstruct2Dataset for training and validation") base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) elif dataset_name == "DeepScaler": base_dataset: Any = DeepScalerDataset(**data_config) @@ -96,16 +95,16 @@ def load_response_dataset(data_config: ResponseDatasetConfig, seed: int = 42): __all__ = [ "AIME2024Dataset", "CLEVRCoGenTDataset", - "DeepScalerDataset", "DAPOMath17KDataset", "DAPOMathAIME2024Dataset", + "DeepScalerDataset", "Geometry3KDataset", - "OpenAIFormatDataset", + "HelpSteer3Dataset", "OasstDataset", + "OpenAIFormatDataset", "OpenMathInstruct2Dataset", "RefCOCODataset", "ResponseDataset", "SquadDataset", "Tulu3SftMixtureDataset", - "HelpSteer3Dataset", ] From 113a3635a7840993cf7cd074576b653359471ded Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Thu, 8 Jan 2026 22:45:52 -0800 Subject: [PATCH 32/41] address seed and refactor load_response_dataset Signed-off-by: Yuki Huang --- docs/guides/grpo.md | 5 +- docs/guides/sft.md | 1 + examples/configs/grpo_math_1B.yaml | 1 + ...lama3.1-70b-8n8g-tp4pp2-long-megatron.yaml | 2 +- ...lama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml | 2 +- .../sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml | 2 +- .../sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml | 2 +- .../llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml | 2 +- ...sft-llama3.1-8b-1n8g-megatron-seqpack.yaml | 2 +- .../llm/sft-llama3.1-8b-1n8g-megatron.yaml | 2 +- .../llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml | 2 +- ...49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled | 1 + ...wen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml | 1 + .../llm/sft-qwen2.5-math7b-2n8g-megatron.yaml | 1 + examples/configs/sft_openmathinstruct2.yaml | 1 + .../sft_openmathinstruct2_megatron.yaml | 1 + examples/run_distillation_math.py | 7 +- examples/run_grpo.py | 7 +- examples/run_grpo_math.py | 7 +- examples/run_grpo_rm.py | 7 +- examples/run_sft.py | 8 +- examples/run_vlm_grpo.py | 7 +- nemo_rl/data/__init__.py | 3 + .../datasets/response_datasets/__init__.py | 73 ++++++++----------- 24 files changed, 70 insertions(+), 77 deletions(-) diff --git a/docs/guides/grpo.md b/docs/guides/grpo.md index 735f54285e..39094a13f2 100755 --- a/docs/guides/grpo.md +++ b/docs/guides/grpo.md @@ -51,6 +51,7 @@ data: output_key: , default is "output" split: , default is None # used for HuggingFace datasets split_validation_size: 0.05 # use 5% of the training data as validation data + seed: 42 # seed for train/validation split when split_validation_size > 0 validation: dataset_name: ResponseDataset data_path: @@ -150,7 +151,7 @@ default_task_spec = TaskDataSpec( ) # 3) Load dataset using the helper (built-ins or local/HF datasets) -data = load_response_dataset(data_config["train"], seed) +data = load_response_dataset(data_config["train"]) # 4) Build task_data_processors mapping task_data_processors = {data.task_name: (data.task_spec, data.processor)} @@ -166,7 +167,7 @@ dataset = AllTaskProcessedDataset( # 6) Do the same thing for validation dataset if it exists if data_config["validation"] is not None: - val_data = load_response_dataset(data_config["validation"], seed) + val_data = load_response_dataset(data_config["validation"]) val_task_data_processors = {val_data.task_name: (val_data.task_spec, val_data.processor)} diff --git a/docs/guides/sft.md b/docs/guides/sft.md index be78a69cbb..7cbb1a7521 100644 --- a/docs/guides/sft.md +++ b/docs/guides/sft.md @@ -84,6 +84,7 @@ data: output_key: , default is "output" split: , default is None # used for HuggingFace datasets split_validation_size: 0.05 # use 5% of the training data as validation data + seed: 42 # seed for train/validation split when split_validation_size > 0 validation: dataset_name: ResponseDataset data_path: diff --git a/examples/configs/grpo_math_1B.yaml b/examples/configs/grpo_math_1B.yaml index f66879f2ed..d7e930d52c 100644 --- a/examples/configs/grpo_math_1B.yaml +++ b/examples/configs/grpo_math_1B.yaml @@ -269,6 +269,7 @@ data: train: dataset_name: OpenMathInstruct-2 split_validation_size: 0.05 # use 5% of the training data as validation data + seed: ${grpo.seed} # seed for train/validation split when split_validation_size > 0 validation: null # You can use custom response datasets for training and validation. For example: # train: diff --git a/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml b/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml index 9d9908caa9..43157c40ef 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml @@ -49,8 +49,8 @@ data: dataset_name: OpenMathInstruct-2 output_key: generated_solution split: train_1M - seed: 42 split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: monitor_gpus: false diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml index d702bc7695..1e174d8e5f 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml @@ -34,8 +34,8 @@ data: dataset_name: OpenMathInstruct-2 output_key: generated_solution split: train_1M - seed: 42 split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml index 4a913fcd3a..b37f503215 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml @@ -30,8 +30,8 @@ data: dataset_name: OpenMathInstruct-2 output_key: generated_solution split: train_1M - seed: 42 split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml index 4a67b3581d..093b22051a 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml @@ -29,8 +29,8 @@ data: add_generation_prompt: true train: dataset_name: tulu3_sft_mixture - seed: 42 split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: log_dir: logs/sft-tmblog-llama3.1-8b diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml index 46df1db2d1..6a4ebfdace 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml @@ -28,8 +28,8 @@ data: dataset_name: OpenMathInstruct-2 output_key: generated_solution split: train_1M - seed: 42 split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp2 diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml index c263ac1f84..0335b7c51d 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml @@ -36,8 +36,8 @@ data: dataset_name: OpenMathInstruct-2 output_key: generated_solution split: train_1M - seed: 42 split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: log_dir: logs/sft-llama3.1-8b-1n8g-megatron diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml index 4f8be1ac08..c1516ba22e 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml @@ -34,8 +34,8 @@ data: dataset_name: OpenMathInstruct-2 output_key: generated_solution split: train_1M - seed: 42 split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: log_dir: logs/sft-llama3.1-8b-1n8g-megatron diff --git a/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml b/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml index 7d368c5be5..314dffeebe 100644 --- a/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml +++ b/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml @@ -15,8 +15,8 @@ data: dataset_name: OpenMathInstruct-2 output_key: generated_solution split: train_1M - seed: 42 split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: log_dir: logs/sft-llama3.2-1b-1n8g-fsdp2tp1 diff --git a/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled b/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled index 9cc94d8574..1bf5502c21 100644 --- a/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled +++ b/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled @@ -48,6 +48,7 @@ data: train: dataset_name: tulu3_sft_mixture split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: tensorboard_enabled: false diff --git a/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml b/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml index 08fda3a8ba..e944d58071 100644 --- a/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml +++ b/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml @@ -22,6 +22,7 @@ data: output_key: generated_solution split: train_1M split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: log_dir: logs/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt diff --git a/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml b/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml index 0a1ee8cc16..2d0e095b38 100644 --- a/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml +++ b/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml @@ -41,6 +41,7 @@ data: output_key: generated_solution split: train_1M split_validation_size: 0.05 + seed: ${sft.seed} validation: null logger: wandb: diff --git a/examples/configs/sft_openmathinstruct2.yaml b/examples/configs/sft_openmathinstruct2.yaml index 9503482c05..8b1acb5893 100644 --- a/examples/configs/sft_openmathinstruct2.yaml +++ b/examples/configs/sft_openmathinstruct2.yaml @@ -81,6 +81,7 @@ data: output_key: generated_solution split: train_1M split_validation_size: 0.05 # use 5% of the training data as validation data + seed: ${sft.seed} # seed for train/validation split when split_validation_size > 0 validation: null logger: diff --git a/examples/configs/sft_openmathinstruct2_megatron.yaml b/examples/configs/sft_openmathinstruct2_megatron.yaml index c1cb3245ce..7a7b75af35 100644 --- a/examples/configs/sft_openmathinstruct2_megatron.yaml +++ b/examples/configs/sft_openmathinstruct2_megatron.yaml @@ -141,6 +141,7 @@ data: output_key: generated_solution split: train_1M split_validation_size: 0.05 # use 5% of the training data as validation data + seed: ${sft.seed} # seed for train/validation split when split_validation_size > 0 validation: null logger: diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index 2552409d86..dd9b1c9d72 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -66,7 +66,6 @@ def setup_data( tokenizer: TokenizerType, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], @@ -86,7 +85,7 @@ def setup_data( # setup train dataset update_single_dataset_config(data_config["train"], data_config) - data = load_response_dataset(data_config["train"], seed) + data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -113,7 +112,7 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: update_single_dataset_config(data_config["validation"], data_config) - val_data = load_response_dataset(data_config["validation"], seed) + val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( val_data.task_spec, @@ -172,7 +171,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(tokenizer, config["data"], config["env"], 42) + ) = setup_data(tokenizer, config["data"], config["env"]) ( student_policy, diff --git a/examples/run_grpo.py b/examples/run_grpo.py index 2eedf4f3c0..9962da71f4 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -63,7 +63,6 @@ def setup_data( tokenizer: TokenizerType, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], @@ -83,7 +82,7 @@ def setup_data( # setup train dataset update_single_dataset_config(data_config["train"], data_config) - data = load_response_dataset(data_config["train"], seed) + data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -110,7 +109,7 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: update_single_dataset_config(data_config["validation"], data_config) - val_data = load_response_dataset(data_config["validation"], seed) + val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( val_data.task_spec, @@ -182,7 +181,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(tokenizer, config["data"], config["env"], config["grpo"]["seed"]) + ) = setup_data(tokenizer, config["data"], config["env"]) ( policy, diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index d093405ed3..6b5b8161a7 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -63,7 +63,6 @@ def setup_data( tokenizer: TokenizerType, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], @@ -83,7 +82,7 @@ def setup_data( # setup train dataset update_single_dataset_config(data_config["train"], data_config) - data = load_response_dataset(data_config["train"], seed) + data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -110,7 +109,7 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: update_single_dataset_config(data_config["validation"], data_config) - val_data = load_response_dataset(data_config["validation"], seed) + val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( val_data.task_spec, @@ -182,7 +181,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(tokenizer, config["data"], config["env"], config["grpo"]["seed"]) + ) = setup_data(tokenizer, config["data"], config["env"]) ( policy, diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index 26492f11ef..b9cc8127a5 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -69,7 +69,6 @@ def setup_data( tokenizer: TokenizerType, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], @@ -89,7 +88,7 @@ def setup_data( # setup train dataset update_single_dataset_config(data_config["train"], data_config) - data = load_response_dataset(data_config["train"], seed) + data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -116,7 +115,7 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: update_single_dataset_config(data_config["validation"], data_config) - val_data = load_response_dataset(data_config["validation"], seed) + val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( val_data.task_spec, @@ -188,7 +187,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(tokenizer, config["data"], config["env"], config["grpo"]["seed"]) + ) = setup_data(tokenizer, config["data"], config["env"]) ( policy, diff --git a/examples/run_sft.py b/examples/run_sft.py index 909bcb1469..13fae7ce82 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -56,7 +56,7 @@ def parse_args(): # ======================================================= -def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig, seed: int): +def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): print("\n▶ Setting up data...") default_task_spec = TaskDataSpec( task_name="sft_default", @@ -66,7 +66,7 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig, seed: int): # setup train dataset update_single_dataset_config(data_config["train"], data_config) - data = load_response_dataset(data_config["train"], seed) + data = load_response_dataset(data_config["train"]) data_processor = partial( data.processor, add_bos=data_config["add_bos"], @@ -96,7 +96,7 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig, seed: int): # validation dataset from config if data_config["validation"] is not None: update_single_dataset_config(data_config["validation"], data_config) - val_data = load_response_dataset(data_config["validation"], seed) + val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_data_processor = partial( val_data.processor, @@ -163,7 +163,7 @@ def main(is_vlm: bool = False): dataset, val_dataset, sft_task_spec, - ) = setup_data(tokenizer, config["data"], config["sft"]["seed"]) + ) = setup_data(tokenizer, config["data"]) ( policy, diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index be7996d4a7..1fc0a7815f 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -61,7 +61,6 @@ def setup_data( processor: AutoProcessor, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], @@ -88,7 +87,7 @@ def setup_data( # setup train dataset update_single_dataset_config(data_config["train"], data_config) - data = load_response_dataset(data_config["train"], seed) + data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -115,7 +114,7 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: update_single_dataset_config(data_config["validation"], data_config) - val_data = load_response_dataset(data_config["validation"], seed) + val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( val_data.task_spec, @@ -195,7 +194,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(processor, config["data"], config["env"], config["grpo"]["seed"]) + ) = setup_data(processor, config["data"], config["env"]) ( policy, diff --git a/nemo_rl/data/__init__.py b/nemo_rl/data/__init__.py index a4e1c0c95b..32d6880fe2 100644 --- a/nemo_rl/data/__init__.py +++ b/nemo_rl/data/__init__.py @@ -26,7 +26,10 @@ class ResponseDatasetConfig(TypedDict): env_name: NotRequired[str] processor: NotRequired[str] # remove once processor is refactored download_dir: NotRequired[str] + # Size of the validation data split_validation_size: NotRequired[float] + # Seed for train/validation split when split_validation_size > 0 + seed: NotRequired[int] # TODO: split this typed dict up so it can be PreferenceDatasetConfig | ResponseDatasetConfig | etc diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index 0f8cdf802d..b0730c654a 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -12,8 +12,6 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any - from nemo_rl.data import ResponseDatasetConfig from nemo_rl.data.datasets.response_datasets.aime24 import AIME2024Dataset from nemo_rl.data.datasets.response_datasets.clevr import CLEVRCoGenTDataset @@ -36,48 +34,35 @@ from nemo_rl.data.datasets.response_datasets.squad import SquadDataset from nemo_rl.data.datasets.response_datasets.tulu3 import Tulu3SftMixtureDataset +DATASET_REGISTRY = { + # built-in datasets + "AIME2024": AIME2024Dataset, + "clevr-cogent": CLEVRCoGenTDataset, + "DAPOMath17K": DAPOMath17KDataset, + "DAPOMathAIME2024": DAPOMathAIME2024Dataset, + "DeepScaler": DeepScalerDataset, + "geometry3k": Geometry3KDataset, + "HelpSteer3": HelpSteer3Dataset, + "open_assistant": OasstDataset, + "OpenMathInstruct-2": OpenMathInstruct2Dataset, + "refcoco": RefCOCODataset, + "squad": SquadDataset, + "tulu3_sft_mixture": Tulu3SftMixtureDataset, + # load from local JSONL file or HuggingFace + "openai_format": OpenAIFormatDataset, + "ResponseDataset": ResponseDataset, +} + -# TODO: refactor this to use the new processor interface and RawDataset interface. https://github.com/NVIDIA-NeMo/RL/issues/1552 -def load_response_dataset(data_config: ResponseDatasetConfig, seed: int = 42): +def load_response_dataset(data_config: ResponseDatasetConfig): """Loads response dataset.""" dataset_name = data_config["dataset_name"] - # for sft training - if dataset_name == "open_assistant": - base_dataset: Any = OasstDataset(**data_config, seed=seed) - elif dataset_name == "squad": - base_dataset: Any = SquadDataset(**data_config) - elif dataset_name == "tulu3_sft_mixture": - base_dataset: Any = Tulu3SftMixtureDataset(**data_config, seed=seed) - elif dataset_name == "openai_format": - base_dataset: Any = OpenAIFormatDataset( - **data_config # pyrefly: ignore[missing-argument] `data_path` is required for this class - ) - # for rl training - elif dataset_name == "OpenMathInstruct-2": - base_dataset: Any = OpenMathInstruct2Dataset(**data_config, seed=seed) - elif dataset_name == "DeepScaler": - base_dataset: Any = DeepScalerDataset(**data_config) - elif dataset_name == "DAPOMath17K": - base_dataset: Any = DAPOMath17KDataset(**data_config) - elif dataset_name == "HelpSteer3": - base_dataset: Any = HelpSteer3Dataset(**data_config) - elif dataset_name == "AIME2024": - base_dataset: Any = AIME2024Dataset(**data_config) - elif dataset_name == "DAPOMathAIME2024": - base_dataset: Any = DAPOMathAIME2024Dataset(**data_config) - # for vlm training - elif dataset_name == "clevr-cogent": - base_dataset: Any = CLEVRCoGenTDataset(**data_config) - elif dataset_name == "refcoco": - base_dataset: Any = RefCOCODataset(**data_config) - elif dataset_name == "geometry3k": - base_dataset: Any = Geometry3KDataset(**data_config) - # fall back to load from JSON file - elif dataset_name == "ResponseDataset": - base_dataset: Any = ResponseDataset( - **data_config, # pyrefly: ignore[missing-argument] `data_path` is required for this class - seed=seed, + # load dataset + if dataset_name in DATASET_REGISTRY: + dataset_class = DATASET_REGISTRY[dataset_name] + dataset = dataset_class( + **data_config # pyrefly: ignore[missing-argument] `data_path` is required for some classes ) else: raise ValueError( @@ -86,10 +71,11 @@ def load_response_dataset(data_config: ResponseDatasetConfig, seed: int = 42): "or set dataset_name=ResponseDataset to load from local JSONL file or HuggingFace." ) - base_dataset.set_task_spec(data_config) - base_dataset.set_processor() + dataset.set_task_spec(data_config) + # Remove this after the data processor is refactored. https://github.com/NVIDIA-NeMo/RL/issues/1658 + dataset.set_processor() - return base_dataset + return dataset __all__ = [ @@ -107,4 +93,5 @@ def load_response_dataset(data_config: ResponseDatasetConfig, seed: int = 42): "ResponseDataset", "SquadDataset", "Tulu3SftMixtureDataset", + "load_response_dataset", ] From 736767ca899cf856a5ec6b524abb813bc9a5bd6b Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Fri, 9 Jan 2026 00:37:23 -0800 Subject: [PATCH 33/41] add migrate guide message Signed-off-by: Yuki Huang --- examples/run_distillation_math.py | 5 +++++ examples/run_grpo.py | 5 +++++ examples/run_grpo_math.py | 5 +++++ examples/run_grpo_rm.py | 5 +++++ examples/run_sft.py | 5 +++++ examples/run_vlm_grpo.py | 5 +++++ 6 files changed, 30 insertions(+) diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index dd9b1c9d72..e5f651b234 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -72,6 +72,11 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." + ) + print("\n▶ Setting up envs...") env_name = data_config["env_name"] env = create_env(env_name=env_name, env_configs=env_configs) diff --git a/examples/run_grpo.py b/examples/run_grpo.py index 9962da71f4..7694ab7865 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -69,6 +69,11 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." + ) + print("\n▶ Setting up envs...") env_name = data_config["env_name"] env = create_env(env_name=env_name, env_configs=env_configs) diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index 6b5b8161a7..c8ca12eae4 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -69,6 +69,11 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." + ) + print("\n▶ Setting up envs...") env_name = data_config["env_name"] env = create_env(env_name=env_name, env_configs=env_configs) diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index b9cc8127a5..0257d3a660 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -75,6 +75,11 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." + ) + print("\n▶ Setting up envs...") env_name = data_config["env_name"] env = create_env(env_name=env_name, env_configs=env_configs) diff --git a/examples/run_sft.py b/examples/run_sft.py index 13fae7ce82..d67b1757ae 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -57,6 +57,11 @@ def parse_args(): def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/sft.md#datasets " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." + ) + print("\n▶ Setting up data...") default_task_spec = TaskDataSpec( task_name="sft_default", diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index 1fc0a7815f..119300166a 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -67,6 +67,11 @@ def setup_data( dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." + ) + print("\n▶ Setting up envs...") env_name = data_config["env_name"] env = VLMEnvironment.options( # type: ignore # it's wrapped with ray.remote From 32c0b2c2417f9a27dd02ac98b18c8a54f0d4da17 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Mon, 22 Dec 2025 00:07:01 -0800 Subject: [PATCH 34/41] add default dataset config Signed-off-by: Yuki Huang update all run_xxx and recipe of response dataset to use default Signed-off-by: Yuki Huang fix missing default Signed-off-by: Yuki Huang --- examples/configs/grpo_math_1B.yaml | 10 +++++---- examples/run_distillation_math.py | 19 +++++----------- examples/run_grpo.py | 17 +++++--------- examples/run_grpo_math.py | 17 +++++--------- examples/run_grpo_rm.py | 17 +++++--------- examples/run_sft.py | 26 +++++++--------------- examples/run_vlm_grpo.py | 17 +++++--------- nemo_rl/algorithms/sft.py | 5 ----- nemo_rl/data/__init__.py | 9 ++++---- nemo_rl/data/datasets/processed_dataset.py | 11 ++++----- nemo_rl/data/datasets/utils.py | 10 ++------- 11 files changed, 57 insertions(+), 101 deletions(-) diff --git a/examples/configs/grpo_math_1B.yaml b/examples/configs/grpo_math_1B.yaml index d7e930d52c..110b0f7a99 100644 --- a/examples/configs/grpo_math_1B.yaml +++ b/examples/configs/grpo_math_1B.yaml @@ -262,15 +262,17 @@ data: num_workers: 1 # dataset - prompt_file: "examples/prompts/cot.txt" - system_prompt_file: null - processor: "math_hf_data_processor" - env_name: "math" train: dataset_name: OpenMathInstruct-2 split_validation_size: 0.05 # use 5% of the training data as validation data seed: ${grpo.seed} # seed for train/validation split when split_validation_size > 0 validation: null + # default settings for all datasets + default: + prompt_file: "examples/prompts/cot.txt" + system_prompt_file: null + processor: "math_hf_data_processor" + env_name: "math" # You can use custom response datasets for training and validation. For example: # train: # dataset_name: ResponseDataset diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index e5f651b234..b0c24849c4 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -28,9 +28,6 @@ load_response_dataset, update_single_dataset_config, ) -from nemo_rl.data.interfaces import ( - TaskDataSpec, -) from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface from nemo_rl.environments.utils import create_env @@ -82,14 +79,9 @@ def setup_data( env = create_env(env_name=env_name, env_configs=env_configs) print("\n▶ Setting up data...") - default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - # setup train dataset - update_single_dataset_config(data_config["train"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -97,7 +89,7 @@ def setup_data( dataset = AllTaskProcessedDataset( data.dataset, tokenizer, - default_task_spec, # default task data spec to process any values not specified in the task-specific specs + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) @@ -116,7 +108,8 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: - update_single_dataset_config(data_config["validation"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["validation"], data_config["default"]) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( @@ -131,7 +124,7 @@ def setup_data( val_dataset = AllTaskProcessedDataset( merged_val_data, tokenizer, - default_task_spec, + None, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) diff --git a/examples/run_grpo.py b/examples/run_grpo.py index 7694ab7865..96d21ed2d5 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -29,7 +29,6 @@ load_response_dataset, update_single_dataset_config, ) -from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface from nemo_rl.environments.utils import create_env @@ -79,14 +78,9 @@ def setup_data( env = create_env(env_name=env_name, env_configs=env_configs) print("\n▶ Setting up data...") - default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - # setup train dataset - update_single_dataset_config(data_config["train"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -94,7 +88,7 @@ def setup_data( dataset = AllTaskProcessedDataset( data.dataset, tokenizer, - default_task_spec, # default task data spec to process any values not specified in the task-specific specs + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) @@ -113,7 +107,8 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: - update_single_dataset_config(data_config["validation"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["validation"], data_config["default"]) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( @@ -128,7 +123,7 @@ def setup_data( val_dataset = AllTaskProcessedDataset( merged_val_data, tokenizer, - default_task_spec, + None, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index c8ca12eae4..90c9c9ee18 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -29,7 +29,6 @@ load_response_dataset, update_single_dataset_config, ) -from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface from nemo_rl.environments.utils import create_env @@ -79,14 +78,9 @@ def setup_data( env = create_env(env_name=env_name, env_configs=env_configs) print("\n▶ Setting up data...") - default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - # setup train dataset - update_single_dataset_config(data_config["train"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -94,7 +88,7 @@ def setup_data( dataset = AllTaskProcessedDataset( data.dataset, tokenizer, - default_task_spec, # default task data spec to process any values not specified in the task-specific specs + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) @@ -113,7 +107,8 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: - update_single_dataset_config(data_config["validation"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["validation"], data_config["default"]) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( @@ -128,7 +123,7 @@ def setup_data( val_dataset = AllTaskProcessedDataset( merged_val_data, tokenizer, - default_task_spec, + None, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index 0257d3a660..f9bc8d2fed 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -29,7 +29,6 @@ load_response_dataset, update_single_dataset_config, ) -from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface from nemo_rl.environments.utils import create_env @@ -85,14 +84,9 @@ def setup_data( env = create_env(env_name=env_name, env_configs=env_configs) print("\n▶ Setting up data...") - default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - # setup train dataset - update_single_dataset_config(data_config["train"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -100,7 +94,7 @@ def setup_data( dataset = AllTaskProcessedDataset( data.dataset, tokenizer, - default_task_spec, # default task data spec to process any values not specified in the task-specific specs + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) @@ -119,7 +113,8 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: - update_single_dataset_config(data_config["validation"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["validation"], data_config["default"]) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( @@ -134,7 +129,7 @@ def setup_data( val_dataset = AllTaskProcessedDataset( merged_val_data, tokenizer, - default_task_spec, + None, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) diff --git a/examples/run_sft.py b/examples/run_sft.py index d67b1757ae..b92a74a17d 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -29,7 +29,6 @@ load_response_dataset, update_single_dataset_config, ) -from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -63,14 +62,9 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): ) print("\n▶ Setting up data...") - default_task_spec = TaskDataSpec( - task_name="sft_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - # setup train dataset - update_single_dataset_config(data_config["train"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) data_processor = partial( data.processor, @@ -83,7 +77,7 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): dataset = AllTaskProcessedDataset( data.dataset, tokenizer, - default_task_spec, + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) @@ -100,7 +94,8 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): # validation dataset from config if data_config["validation"] is not None: - update_single_dataset_config(data_config["validation"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["validation"], data_config["default"]) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_data_processor = partial( @@ -120,13 +115,13 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): val_dataset = AllTaskProcessedDataset( merged_val_data, tokenizer, - default_task_spec, + None, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") - return dataset, val_dataset, default_task_spec + return dataset, val_dataset def main(is_vlm: bool = False): @@ -164,11 +159,7 @@ def main(is_vlm: bool = False): tokenizer = get_tokenizer(config["policy"]["tokenizer"], get_processor=is_vlm) # setup data - ( - dataset, - val_dataset, - sft_task_spec, - ) = setup_data(tokenizer, config["data"]) + dataset, val_dataset = setup_data(tokenizer, config["data"]) ( policy, @@ -190,7 +181,6 @@ def main(is_vlm: bool = False): loss_fn, master_config, logger, - sft_task_spec, checkpointer, sft_save_state, ) diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index 119300166a..e3704561ad 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -29,7 +29,6 @@ load_response_dataset, update_single_dataset_config, ) -from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.distributed.ray_actor_environment_registry import ( get_actor_python_env, ) @@ -84,14 +83,9 @@ def setup_data( ).remote(env_configs[env_name]) print("\n▶ Setting up data...") - default_task_spec = TaskDataSpec( - task_name="vlm_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - # setup train dataset - update_single_dataset_config(data_config["train"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} task_to_env = {data.task_name: env} @@ -99,7 +93,7 @@ def setup_data( dataset = AllTaskProcessedDataset( data.dataset, processor, - default_task_spec, # default task data spec to process any values not specified in the task-specific specs + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) @@ -118,7 +112,8 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: - update_single_dataset_config(data_config["validation"], data_config) + if "default" in data_config: + update_single_dataset_config(data_config["validation"], data_config["default"]) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( @@ -133,7 +128,7 @@ def setup_data( val_dataset = AllTaskProcessedDataset( merged_val_data, processor, - default_task_spec, + None, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) diff --git a/nemo_rl/algorithms/sft.py b/nemo_rl/algorithms/sft.py index 09cbdf93c2..b5787fdb28 100644 --- a/nemo_rl/algorithms/sft.py +++ b/nemo_rl/algorithms/sft.py @@ -28,7 +28,6 @@ from nemo_rl.data import DataConfig from nemo_rl.data.collate_fn import rl_collate_fn from nemo_rl.data.datasets import AllTaskProcessedDataset -from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.data.llm_message_utils import ( add_loss_mask_to_message_log, batched_message_log_to_flat_message, @@ -238,7 +237,6 @@ def validate( loss_fn, step: int, master_config: MasterConfig, - sft_task_spec: TaskDataSpec, val_batches: int, val_batch_size: int, val_mbs: int, @@ -358,7 +356,6 @@ def sft_train( loss_fn, master_config, logger, - sft_task_spec, checkpointer, sft_save_state: SFTSaveState, ) -> None: @@ -400,7 +397,6 @@ def sft_train( loss_fn, step=0, master_config=master_config, - sft_task_spec=sft_task_spec, val_batches=sft_config["val_batches"], val_batch_size=sft_config["val_global_batch_size"], val_mbs=sft_config["val_micro_batch_size"], @@ -474,7 +470,6 @@ def sft_train( loss_fn, step=total_steps + 1, master_config=master_config, - sft_task_spec=sft_task_spec, val_batches=sft_config["val_batches"], val_batch_size=sft_config["val_global_batch_size"], val_mbs=sft_config["val_micro_batch_size"], diff --git a/nemo_rl/data/__init__.py b/nemo_rl/data/__init__.py index 32d6880fe2..17efad5351 100644 --- a/nemo_rl/data/__init__.py +++ b/nemo_rl/data/__init__.py @@ -48,13 +48,10 @@ class DataConfig(TypedDict): # However, setting it too high might cause memory issues for long seqlens. num_workers: NotRequired[int] # dataset configs - prompt_file: NotRequired[str | None] - system_prompt_file: NotRequired[str | None] - env_name: NotRequired[str] - processor: NotRequired[str] # remove once processor is refactored # TODO: remove NotRequired once preference dataset is refactored train: NotRequired[ResponseDatasetConfig] validation: NotRequired[ResponseDatasetConfig | None] + default: NotRequired[ResponseDatasetConfig | None] # TODO: remove once preference dataset is refactored dataset_name: NotRequired[str] val_dataset_name: NotRequired[str] @@ -63,6 +60,10 @@ class DataConfig(TypedDict): split: NotRequired[str] train_data_path: NotRequired[str] val_data_paths: NotRequired[dict[str, str]] + prompt_file: NotRequired[str | None] + system_prompt_file: NotRequired[str | None] + env_name: NotRequired[str] + processor: NotRequired[str] # remove once processor is refactored # =============================================================================== diff --git a/nemo_rl/data/datasets/processed_dataset.py b/nemo_rl/data/datasets/processed_dataset.py index 67aa0b0df2..ea1cbf87d3 100644 --- a/nemo_rl/data/datasets/processed_dataset.py +++ b/nemo_rl/data/datasets/processed_dataset.py @@ -56,17 +56,18 @@ def __init__( ): self.dataset = dataset self.tokenizer = tokenizer + # TODO: will be removed once preference dataset is refactored self.default_task_data_spec = default_task_data_spec self.task_data_processors = task_data_processors self.max_seq_length = max_seq_length self._bos_checked = False - if isinstance(task_data_processors, dict): + if ( + isinstance(task_data_processors, dict) + and default_task_data_spec is not None + ): # apply defaults to all task data specs - for task_name, ( - task_data_spec, - task_data_processor, - ) in task_data_processors.items(): + for _, (task_data_spec, _) in task_data_processors.items(): task_data_spec.copy_defaults(self.default_task_data_spec) def __len__(self) -> int: diff --git a/nemo_rl/data/datasets/utils.py b/nemo_rl/data/datasets/utils.py index d6e86895a6..bea54e29cd 100644 --- a/nemo_rl/data/datasets/utils.py +++ b/nemo_rl/data/datasets/utils.py @@ -111,12 +111,6 @@ def get_extra_kwargs(data_config: dict, keys: list[str]) -> dict: def update_single_dataset_config(data_config: dict, default_data_config: dict) -> None: """Fill the single dataset config with default dataset config.""" - fill_keys = [ - "prompt_file", - "system_prompt_file", - "processor", - "env_name", - ] - for key in fill_keys: - if key not in data_config and key in default_data_config: + for key in default_data_config.keys(): + if key not in data_config: data_config[key] = default_data_config[key] From 5f883c87c9aa18095002df1a7ffb4b6b515f6617 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Sun, 11 Jan 2026 19:21:07 -0800 Subject: [PATCH 35/41] update config for default Signed-off-by: Yuki Huang --- examples/configs/distillation_math.yaml | 8 +++++--- examples/configs/grpo_rm_1B.yaml | 3 ++- examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml | 3 ++- .../llm/grpo-dapomath17k-dsv3-megatron.yaml | 3 ++- ...n-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled | 7 ++++--- ...po-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml | 3 ++- ...sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml | 3 ++- ...sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml | 3 ++- .../llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml | 3 ++- .../recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml | 3 ++- .../llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml | 3 ++- .../recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml | 3 ++- .../llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml | 3 ++- ...sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml | 3 ++- .../llm/sft-qwen2.5-math7b-2n8g-megatron.yaml | 3 ++- examples/configs/sft.yaml | 10 ++++++---- examples/configs/sft_openmathinstruct2.yaml | 4 +++- .../configs/sft_openmathinstruct2_megatron.yaml | 14 -------------- examples/configs/sft_vlm_3B.yaml | 4 +++- examples/configs/vlm_grpo_3B.yaml | 10 ++++++---- examples/configs/vlm_grpo_3B_megatron.yaml | 10 ++++++---- 21 files changed, 59 insertions(+), 47 deletions(-) diff --git a/examples/configs/distillation_math.yaml b/examples/configs/distillation_math.yaml index f992f7f03c..078b2bef96 100644 --- a/examples/configs/distillation_math.yaml +++ b/examples/configs/distillation_math.yaml @@ -210,16 +210,18 @@ teacher: data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len shuffle: true - env_name: "math" # dataset - prompt_file: "examples/prompts/cot.txt" - system_prompt_file: null train: dataset_name: DeepScaler validation: dataset_name: AIME2024 repeat: 16 + # default settings for all datasets + default: + prompt_file: "examples/prompts/cot.txt" + system_prompt_file: null + env_name: "math" env: math: diff --git a/examples/configs/grpo_rm_1B.yaml b/examples/configs/grpo_rm_1B.yaml index b0a709b253..61e6204b9a 100644 --- a/examples/configs/grpo_rm_1B.yaml +++ b/examples/configs/grpo_rm_1B.yaml @@ -2,7 +2,8 @@ defaults: "grpo_math_1B.yaml" data: - env_name: "reward_model" + default: + env_name: "reward_model" env: reward_model: diff --git a/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml b/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml index 443ddae765..9035a3598c 100644 --- a/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml +++ b/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml @@ -75,11 +75,12 @@ policy: enforce_eager: true data: max_input_seq_length: 2048 - prompt_file: null train: dataset_name: DAPOMath17K validation: dataset_name: DAPOMathAIME2024 + default: + prompt_file: null env: math: num_workers: 16 diff --git a/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml b/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml index a0e0115ea5..8d19757d54 100644 --- a/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml +++ b/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml @@ -41,11 +41,12 @@ policy: async_engine: true tensor_parallel_size: 32 data: - prompt_file: null train: dataset_name: DAPOMath17K validation: dataset_name: DAPOMathAIME2024 + default: + prompt_file: null logger: monitor_gpus: false wandb: diff --git a/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled b/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled index d9c95e026c..f442856807 100644 --- a/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled +++ b/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled @@ -44,15 +44,16 @@ policy: data: # Training with HelpSteer3 will lead to high logprob error. # ISSUE: https://github.com/NVIDIA-NeMo/RL/issues/1570 - prompt_file: null - env_name: "code_jaccard" - processor: helpsteer3_data_processor train: dataset_name: HelpSteer3 split: train validation: dataset_name: HelpSteer3 split: validation + default: + prompt_file: null + env_name: "code_jaccard" + processor: helpsteer3_data_processor env: code_jaccard: num_workers: 8 diff --git a/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml b/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml index ba39d81eac..69ff4a4229 100644 --- a/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml +++ b/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml @@ -37,11 +37,12 @@ policy: use_deep_gemm: true data: max_input_seq_length: 2048 - prompt_file: null train: dataset_name: DAPOMath17K validation: dataset_name: DAPOMathAIME2024 + default: + prompt_file: null env: dapo: num_workers: 16 diff --git a/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml b/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml index 43157c40ef..bb43955812 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml @@ -44,7 +44,6 @@ policy: eps: 1.0e-08 data: add_generation_prompt: true - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -52,6 +51,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: monitor_gpus: false wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml index 1e174d8e5f..a5745e983d 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml @@ -29,7 +29,6 @@ policy: eps: 1.0e-08 data: add_generation_prompt: true - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -37,6 +36,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml index b37f503215..0e627a2aed 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml @@ -25,7 +25,6 @@ policy: eps: 1.0e-08 data: add_generation_prompt: true - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -33,6 +32,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml index 6a4ebfdace..7d179fa103 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml @@ -23,7 +23,6 @@ policy: eps: 1.0e-08 data: add_generation_prompt: true - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -31,6 +30,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp2 wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml index 0335b7c51d..aa62330e3e 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml @@ -31,7 +31,6 @@ policy: lr_warmup_init: 1.9999e-65 data: add_generation_prompt: true - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -39,6 +38,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-1n8g-megatron wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml index c1516ba22e..7e9452dff7 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml @@ -29,7 +29,6 @@ policy: lr_warmup_init: 1.9999e-65 data: add_generation_prompt: true - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -37,6 +36,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-1n8g-megatron wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml b/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml index 314dffeebe..d7e56efda9 100644 --- a/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml +++ b/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml @@ -10,7 +10,6 @@ policy: make_sequence_length_divisible_by: 1 data: add_generation_prompt: true - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -18,6 +17,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.2-1b-1n8g-fsdp2tp1 wandb: diff --git a/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml b/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml index e944d58071..8373a788ff 100644 --- a/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml +++ b/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml @@ -16,7 +16,6 @@ policy: make_sequence_length_divisible_by: 8 data: add_generation_prompt: true - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -24,6 +23,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt wandb: diff --git a/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml b/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml index 2d0e095b38..d3bdd77bb2 100644 --- a/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml +++ b/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml @@ -35,7 +35,6 @@ policy: data: add_generation_prompt: true num_workers: 8 - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -43,6 +42,8 @@ data: split_validation_size: 0.05 seed: ${sft.seed} validation: null + default: + prompt_file: examples/prompts/math.txt logger: wandb: project: nemo-rl diff --git a/examples/configs/sft.yaml b/examples/configs/sft.yaml index e33f2649d9..ce23d6e0ec 100644 --- a/examples/configs/sft.yaml +++ b/examples/configs/sft.yaml @@ -182,16 +182,18 @@ data: shuffle: true num_workers: 1 - prompt_file: null - system_prompt_file: null - processor: "sft_processor" - + # dataset train: dataset_name: "squad" split: "train" validation: dataset_name: "squad" split: "validation" + # default settings for all datasets + default: + prompt_file: null + system_prompt_file: null + processor: "sft_processor" # You can use custom response datasets for training and validation. For example: # train: # dataset_name: ResponseDataset diff --git a/examples/configs/sft_openmathinstruct2.yaml b/examples/configs/sft_openmathinstruct2.yaml index 8b1acb5893..fee5e7a06d 100644 --- a/examples/configs/sft_openmathinstruct2.yaml +++ b/examples/configs/sft_openmathinstruct2.yaml @@ -75,7 +75,6 @@ data: shuffle: true # dataset - prompt_file: examples/prompts/math.txt train: dataset_name: OpenMathInstruct-2 output_key: generated_solution @@ -83,6 +82,9 @@ data: split_validation_size: 0.05 # use 5% of the training data as validation data seed: ${sft.seed} # seed for train/validation split when split_validation_size > 0 validation: null + # default settings for all datasets + default: + prompt_file: examples/prompts/math.txt logger: log_dir: "logs" # Base directory for all logs diff --git a/examples/configs/sft_openmathinstruct2_megatron.yaml b/examples/configs/sft_openmathinstruct2_megatron.yaml index 7a7b75af35..18aba3597b 100644 --- a/examples/configs/sft_openmathinstruct2_megatron.yaml +++ b/examples/configs/sft_openmathinstruct2_megatron.yaml @@ -128,22 +128,8 @@ policy: optimizer: null data: - max_input_seq_length: ${policy.max_total_sequence_length} - add_bos: true - add_eos: true - add_generation_prompt: true num_workers: 1 - # dataset - prompt_file: examples/prompts/math.txt - train: - dataset_name: OpenMathInstruct-2 - output_key: generated_solution - split: train_1M - split_validation_size: 0.05 # use 5% of the training data as validation data - seed: ${sft.seed} # seed for train/validation split when split_validation_size > 0 - validation: null - logger: log_dir: "logs" # Base directory for all logs wandb_enabled: true # Make sure you do a ``wandb login [Your API key]'' before running diff --git a/examples/configs/sft_vlm_3B.yaml b/examples/configs/sft_vlm_3B.yaml index 799eb00ba4..b67a0d2087 100644 --- a/examples/configs/sft_vlm_3B.yaml +++ b/examples/configs/sft_vlm_3B.yaml @@ -28,13 +28,15 @@ data: add_generation_prompt: false # dataset - prompt_file: null train: dataset_name: clevr-cogent split: train validation: dataset_name: clevr-cogent split: valA + # default settings for all datasets + default: + prompt_file: null logger: log_dir: "logs" # Base directory for all logs diff --git a/examples/configs/vlm_grpo_3B.yaml b/examples/configs/vlm_grpo_3B.yaml index 7784584d64..9eb3ea9d59 100644 --- a/examples/configs/vlm_grpo_3B.yaml +++ b/examples/configs/vlm_grpo_3B.yaml @@ -235,16 +235,18 @@ data: num_workers: 1 # dataset - prompt_file: "examples/prompts/clevr_cogent_cot.txt" - system_prompt_file: null - processor: "vlm_hf_data_processor" - env_name: "clevr-cogent" train: dataset_name: clevr-cogent split: train validation: dataset_name: clevr-cogent split: valA + # default settings for all datasets + default: + prompt_file: examples/prompts/clevr_cogent_cot.txt + system_prompt_file: null + processor: "vlm_hf_data_processor" + env_name: "clevr-cogent" env: clevr-cogent: diff --git a/examples/configs/vlm_grpo_3B_megatron.yaml b/examples/configs/vlm_grpo_3B_megatron.yaml index dbdfac9f12..8bb4fb30e1 100644 --- a/examples/configs/vlm_grpo_3B_megatron.yaml +++ b/examples/configs/vlm_grpo_3B_megatron.yaml @@ -186,16 +186,18 @@ data: shuffle: true num_workers: 1 # dataset - prompt_file: examples/prompts/clevr_cogent_cot.txt - system_prompt_file: null - processor: "vlm_hf_data_processor" - env_name: "clevr-cogent" train: dataset_name: clevr-cogent split: train validation: dataset_name: clevr-cogent split: valA + # default settings for all datasets + default: + prompt_file: examples/prompts/clevr_cogent_cot.txt + system_prompt_file: null + processor: "vlm_hf_data_processor" + env_name: "clevr-cogent" env: clevr-cogent: num_workers: 8 From d53b75e4f3995f60479c8a40cf5aaefd90e72989 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Sun, 11 Jan 2026 19:47:27 -0800 Subject: [PATCH 36/41] update doc for default Signed-off-by: Yuki Huang --- docs/guides/grpo.md | 64 ++++++++++++++---------------- docs/guides/sft.md | 29 +++++++++----- examples/configs/grpo_math_1B.yaml | 28 +++++++------ examples/configs/sft.yaml | 27 +++++++------ 4 files changed, 79 insertions(+), 69 deletions(-) diff --git a/docs/guides/grpo.md b/docs/guides/grpo.md index 39094a13f2..bbc2db3d63 100755 --- a/docs/guides/grpo.md +++ b/docs/guides/grpo.md @@ -44,20 +44,28 @@ All of these datasets are downloaded from HuggingFace and preprocessed on-the-fl We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with JSONL-formatted response datasets for loading datasets from local path or Hugging Face. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml data: + # other data settings, see `examples/configs/grpo_math_1B.yaml` for more details + ... + # dataset settings train: - dataset_name: ResponseDataset - data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - input_key: , default is "input" - output_key: , default is "output" - split: , default is None # used for HuggingFace datasets - split_validation_size: 0.05 # use 5% of the training data as validation data - seed: 42 # seed for train/validation split when split_validation_size > 0 + # this dataset will override input_key and use the default values for other vars + data_path: /path/to/local/train_dataset.jsonl # local file or hf_org/hf_dataset_name (HuggingFace) + input_key: question + split: train # used for HuggingFace datasets + split_validation_size: 0.05 # use 5% of the training data as validation data + seed: 42 # seed for train/validation split when split_validation_size > 0 validation: + # this dataset will use the default values for other vars except data_path + data_path: /path/to/local/val_dataset.jsonl + default: + # will use below vars as default values if dataset doesn't specify it dataset_name: ResponseDataset - data_path: - input_key: , default is "input" - output_key: , default is "output" - split: , default is None # used for HuggingFace datasets + input_key: input + output_key: output + prompt_file: null + system_prompt_file: null + processor: "math_hf_data_processor" + env_name: "math" ``` We support using a single dataset for both train and validation by using `split_validation_size` to set the validation ratio. @@ -108,23 +116,17 @@ We have an example of this as `math_data_processor` in [processors.py](../../nem - Determines which processor, env, prompts, and dataset to use for this task. - Currently, we support a single dataset and a single environment. Therefore, task_name equals the dataset_name in the config (i.e., config.data.dataset_name). - task_spec (TaskDataSpec): - - Specifies per-task system prompt and prompt (with defaults applied from a global spec when unspecified). + - Specifies per-task system prompt and prompt. - task_data_processors: - Dict mapping: task_name -> (task_spec, processor_fn). - - Typical flow: provide a default mapping using defaultdict, then explicitly register the dataset-provided processor under the resolved task_name. +- task_to_env: + - Dict mapping: task_name -> task_env. Example (simplified): ```python -# task_spec -default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], -) - -# task_data_processors task_data_processors = {data.task_name: (data.task_spec, data.processor)} +task_to_env = {data.task_name: env} ``` #### Putting It All Together @@ -143,29 +145,23 @@ Then, you can set the data up as follows: env_name = data_config["env_name"] env = create_env(env_name=env_name, env_configs=env_configs) -# 2) Build default TaskDataSpec from config (prompts loaded from files if present) -default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], -) - -# 3) Load dataset using the helper (built-ins or local/HF datasets) +# 2) Load dataset using the helper (built-ins or local/HF datasets) data = load_response_dataset(data_config["train"]) -# 4) Build task_data_processors mapping +# 3) Build task mapping task_data_processors = {data.task_name: (data.task_spec, data.processor)} +task_to_env = {data.task_name: env} -# 5) Construct processed dataset +# 4) Construct processed dataset dataset = AllTaskProcessedDataset( data.dataset, tokenizer, - default_task_spec, + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) -# 6) Do the same thing for validation dataset if it exists +# 5) Do the same thing for validation dataset if it exists if data_config["validation"] is not None: val_data = load_response_dataset(data_config["validation"]) @@ -174,7 +170,7 @@ if data_config["validation"] is not None: val_dataset = AllTaskProcessedDataset( val_data.dataset, tokenizer, - default_task_spec, + None, val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) diff --git a/docs/guides/sft.md b/docs/guides/sft.md index 7cbb1a7521..2d74914ca2 100644 --- a/docs/guides/sft.md +++ b/docs/guides/sft.md @@ -77,20 +77,27 @@ All of these datasets are downloaded from HuggingFace and preprocessed on-the-fl We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with JSONL-formatted response datasets for loading datasets from local path or Hugging Face. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml data: + # other data settings, see `examples/configs/sft.yaml` for more details + ... + # dataset settings train: - dataset_name: ResponseDataset - data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - input_key: , default is "input" - output_key: , default is "output" - split: , default is None # used for HuggingFace datasets - split_validation_size: 0.05 # use 5% of the training data as validation data - seed: 42 # seed for train/validation split when split_validation_size > 0 + # this dataset will override input_key and use the default values for other vars + data_path: /path/to/local/train_dataset.jsonl # local file or hf_org/hf_dataset_name (HuggingFace) + input_key: question + split: train # used for HuggingFace datasets + split_validation_size: 0.05 # use 5% of the training data as validation data + seed: 42 # seed for train/validation split when split_validation_size > 0 validation: + # this dataset will use the default values for other vars except data_path + data_path: /path/to/local/val_dataset.jsonl + default: + # will use below vars as default values if dataset doesn't specify it dataset_name: ResponseDataset - data_path: - input_key: , default is "input" - output_key: , default is "output" - split: , default is None # used for HuggingFace datasets + input_key: input + output_key: output + prompt_file: null + system_prompt_file: null + processor: "sft_processor" ``` We support using a single dataset for both train and validation by using `split_validation_size` to set the ratio of validation. diff --git a/examples/configs/grpo_math_1B.yaml b/examples/configs/grpo_math_1B.yaml index 110b0f7a99..a7a9fe86b6 100644 --- a/examples/configs/grpo_math_1B.yaml +++ b/examples/configs/grpo_math_1B.yaml @@ -274,18 +274,22 @@ data: processor: "math_hf_data_processor" env_name: "math" # You can use custom response datasets for training and validation. For example: - # train: - # dataset_name: ResponseDataset - # data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - # input_key: , default is "input" - # output_key: , default is "output" - # split: , default is None # used for HuggingFace datasets - # validation: - # dataset_name: ResponseDataset - # data_path: - # input_key: , default is "input" - # output_key: , default is "output" - # split: , default is None # used for HuggingFace datasets + # train: + # # this dataset will override input_key and use the default values for other vars + # data_path: /path/to/local/train_dataset.jsonl + # input_key: question + # validation: + # # this dataset will use the default values for other vars except data_path + # data_path: /path/to/local/val_dataset.jsonl + # default: + # # will use below vars as default values if dataset doesn't specify it + # dataset_name: ResponseDataset + # input_key: input + # output_key: output + # prompt_file: null + # system_prompt_file: null + # processor: "math_hf_data_processor" + # env_name: math # See https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#datasets for more details. env: diff --git a/examples/configs/sft.yaml b/examples/configs/sft.yaml index ce23d6e0ec..728b1c47ff 100644 --- a/examples/configs/sft.yaml +++ b/examples/configs/sft.yaml @@ -195,18 +195,21 @@ data: system_prompt_file: null processor: "sft_processor" # You can use custom response datasets for training and validation. For example: - # train: - # dataset_name: ResponseDataset - # data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - # input_key: , default is "input" - # output_key: , default is "output" - # split: , default is None # used for HuggingFace datasets - # validation: - # dataset_name: ResponseDataset - # data_path: - # input_key: , default is "input" - # output_key: , default is "output" - # split: , default is None # used for HuggingFace datasets + # train: + # # this dataset will override input_key and use the default values for other vars + # data_path: /path/to/local/train_dataset.jsonl + # input_key: question + # validation: + # # this dataset will use the default values for other vars except data_path + # data_path: /path/to/local/val_dataset.jsonl + # default: + # # will use below vars as default values if dataset doesn't specify it + # dataset_name: ResponseDataset + # input_key: input + # output_key: output + # prompt_file: null + # system_prompt_file: null + # processor: "sft_processor" # See https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/sft.md#datasets for more details. From 495491780c4cd0b80407051602353c5fb20d9fa0 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Sun, 11 Jan 2026 19:52:26 -0800 Subject: [PATCH 37/41] lint Signed-off-by: Yuki Huang --- examples/run_distillation_math.py | 4 +++- examples/run_grpo.py | 4 +++- examples/run_grpo_math.py | 4 +++- examples/run_grpo_rm.py | 4 +++- examples/run_sft.py | 4 +++- examples/run_vlm_grpo.py | 4 +++- 6 files changed, 18 insertions(+), 6 deletions(-) diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index b0c24849c4..d75a366ca0 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -109,7 +109,9 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: if "default" in data_config: - update_single_dataset_config(data_config["validation"], data_config["default"]) + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( diff --git a/examples/run_grpo.py b/examples/run_grpo.py index 96d21ed2d5..c197817eda 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -108,7 +108,9 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: if "default" in data_config: - update_single_dataset_config(data_config["validation"], data_config["default"]) + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index 90c9c9ee18..a37c6e3a2a 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -108,7 +108,9 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: if "default" in data_config: - update_single_dataset_config(data_config["validation"], data_config["default"]) + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index f9bc8d2fed..d18198ff2d 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -114,7 +114,9 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: if "default" in data_config: - update_single_dataset_config(data_config["validation"], data_config["default"]) + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( diff --git a/examples/run_sft.py b/examples/run_sft.py index b92a74a17d..055e97f1a8 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -95,7 +95,9 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): # validation dataset from config if data_config["validation"] is not None: if "default" in data_config: - update_single_dataset_config(data_config["validation"], data_config["default"]) + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_data_processor = partial( diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index e3704561ad..3580a1a508 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -113,7 +113,9 @@ def setup_data( # validation dataset from config if data_config["validation"] is not None: if "default" in data_config: - update_single_dataset_config(data_config["validation"], data_config["default"]) + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) val_data = load_response_dataset(data_config["validation"]) val_data_list.append(val_data.dataset) val_task_data_processors[val_data.task_name] = ( From c2487b1581e1b703d8430d2481e688625359a096 Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Sun, 11 Jan 2026 21:35:35 -0800 Subject: [PATCH 38/41] extract env from config Signed-off-by: Yuki Huang --- examples/run_distillation_math.py | 14 ++++++++++---- examples/run_grpo.py | 14 ++++++++++---- examples/run_grpo_math.py | 14 ++++++++++---- examples/run_grpo_rm.py | 14 ++++++++++---- examples/run_vlm_grpo.py | 26 +++++++++++--------------- nemo_rl/data/datasets/__init__.py | 2 ++ nemo_rl/data/datasets/utils.py | 24 ++++++++++++++++++++++++ nemo_rl/environments/utils.py | 7 +++++-- 8 files changed, 82 insertions(+), 33 deletions(-) diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index d75a366ca0..017d92fbb1 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -25,6 +25,7 @@ from nemo_rl.data import DataConfig from nemo_rl.data.datasets import ( AllTaskProcessedDataset, + extract_necessary_env_names, load_response_dataset, update_single_dataset_config, ) @@ -75,8 +76,11 @@ def setup_data( ) print("\n▶ Setting up envs...") - env_name = data_config["env_name"] - env = create_env(env_name=env_name, env_configs=env_configs) + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list + } print("\n▶ Setting up data...") # setup train dataset @@ -84,7 +88,7 @@ def setup_data( update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} - task_to_env = {data.task_name: env} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( data.dataset, @@ -118,7 +122,9 @@ def setup_data( val_data.task_spec, val_data.processor, ) - val_task_to_env[val_data.task_name] = env + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] val_dataset = None if len(val_data_list) > 0: diff --git a/examples/run_grpo.py b/examples/run_grpo.py index c197817eda..2c31f9eea9 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -26,6 +26,7 @@ from nemo_rl.data import DataConfig from nemo_rl.data.datasets import ( AllTaskProcessedDataset, + extract_necessary_env_names, load_response_dataset, update_single_dataset_config, ) @@ -74,8 +75,11 @@ def setup_data( ) print("\n▶ Setting up envs...") - env_name = data_config["env_name"] - env = create_env(env_name=env_name, env_configs=env_configs) + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list + } print("\n▶ Setting up data...") # setup train dataset @@ -83,7 +87,7 @@ def setup_data( update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} - task_to_env = {data.task_name: env} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( data.dataset, @@ -117,7 +121,9 @@ def setup_data( val_data.task_spec, val_data.processor, ) - val_task_to_env[val_data.task_name] = env + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] val_dataset = None if len(val_data_list) > 0: diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index a37c6e3a2a..cafe2d387a 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -26,6 +26,7 @@ from nemo_rl.data import DataConfig from nemo_rl.data.datasets import ( AllTaskProcessedDataset, + extract_necessary_env_names, load_response_dataset, update_single_dataset_config, ) @@ -74,8 +75,11 @@ def setup_data( ) print("\n▶ Setting up envs...") - env_name = data_config["env_name"] - env = create_env(env_name=env_name, env_configs=env_configs) + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list + } print("\n▶ Setting up data...") # setup train dataset @@ -83,7 +87,7 @@ def setup_data( update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} - task_to_env = {data.task_name: env} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( data.dataset, @@ -117,7 +121,9 @@ def setup_data( val_data.task_spec, val_data.processor, ) - val_task_to_env[val_data.task_name] = env + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] val_dataset = None if len(val_data_list) > 0: diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index d18198ff2d..9b6e04d21f 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -26,6 +26,7 @@ from nemo_rl.data import DataConfig from nemo_rl.data.datasets import ( AllTaskProcessedDataset, + extract_necessary_env_names, load_response_dataset, update_single_dataset_config, ) @@ -80,8 +81,11 @@ def setup_data( ) print("\n▶ Setting up envs...") - env_name = data_config["env_name"] - env = create_env(env_name=env_name, env_configs=env_configs) + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list + } print("\n▶ Setting up data...") # setup train dataset @@ -89,7 +93,7 @@ def setup_data( update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} - task_to_env = {data.task_name: env} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( data.dataset, @@ -123,7 +127,9 @@ def setup_data( val_data.task_spec, val_data.processor, ) - val_task_to_env[val_data.task_name] = env + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] val_dataset = None if len(val_data_list) > 0: diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index 3580a1a508..eacd66033f 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -26,15 +26,13 @@ from nemo_rl.data import DataConfig from nemo_rl.data.datasets import ( AllTaskProcessedDataset, + extract_necessary_env_names, load_response_dataset, update_single_dataset_config, ) -from nemo_rl.distributed.ray_actor_environment_registry import ( - get_actor_python_env, -) from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface -from nemo_rl.environments.vlm_environment import VLMEnvironment +from nemo_rl.environments.utils import create_env from nemo_rl.models.generation import configure_generation_config from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -72,15 +70,11 @@ def setup_data( ) print("\n▶ Setting up envs...") - env_name = data_config["env_name"] - env = VLMEnvironment.options( # type: ignore # it's wrapped with ray.remote - runtime_env={ - "py_executable": get_actor_python_env( - "nemo_rl.environments.vlm_environment.VLMEnvironment" - ), - "env_vars": dict(os.environ), # Pass thru all user environment variables - } - ).remote(env_configs[env_name]) + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name="vlm", env_config=env_configs[env_name]) + for env_name in env_name_list + } print("\n▶ Setting up data...") # setup train dataset @@ -88,7 +82,7 @@ def setup_data( update_single_dataset_config(data_config["train"], data_config["default"]) data = load_response_dataset(data_config["train"]) task_data_processors = {data.task_name: (data.task_spec, data.processor)} - task_to_env = {data.task_name: env} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( data.dataset, @@ -122,7 +116,9 @@ def setup_data( val_data.task_spec, val_data.processor, ) - val_task_to_env[val_data.task_name] = env + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] val_dataset = None if len(val_data_list) > 0: diff --git a/nemo_rl/data/datasets/__init__.py b/nemo_rl/data/datasets/__init__.py index 5e32b337b4..a4747b7114 100644 --- a/nemo_rl/data/datasets/__init__.py +++ b/nemo_rl/data/datasets/__init__.py @@ -18,6 +18,7 @@ from nemo_rl.data.datasets.response_datasets import load_response_dataset from nemo_rl.data.datasets.utils import ( assert_no_double_bos, + extract_necessary_env_names, update_single_dataset_config, ) @@ -27,5 +28,6 @@ "load_preference_dataset", "load_response_dataset", "assert_no_double_bos", + "extract_necessary_env_names", "update_single_dataset_config", ] diff --git a/nemo_rl/data/datasets/utils.py b/nemo_rl/data/datasets/utils.py index bea54e29cd..151c79d47d 100644 --- a/nemo_rl/data/datasets/utils.py +++ b/nemo_rl/data/datasets/utils.py @@ -114,3 +114,27 @@ def update_single_dataset_config(data_config: dict, default_data_config: dict) - for key in default_data_config.keys(): if key not in data_config: data_config[key] = default_data_config[key] + + +def extract_necessary_env_names(data_config: dict) -> list[str]: + """Extract the necessary environment names from the data config. + + Some environments are set in env_configs but not used in the data config. + This function extracts the necessary environment names from the data config. + + Args: + data_config: The data config. + + Returns: + The necessary environment names. + """ + necessary_env_names = set() + keys = ["train", "validation", "default"] + for key in keys: + if ( + key in data_config + and data_config[key] is not None + and "env_name" in data_config[key] + ): + necessary_env_names.add(data_config[key]["env_name"]) + return list(necessary_env_names) diff --git a/nemo_rl/environments/utils.py b/nemo_rl/environments/utils.py index a9e50c67e1..99fe9eda1a 100644 --- a/nemo_rl/environments/utils.py +++ b/nemo_rl/environments/utils.py @@ -43,6 +43,9 @@ class EnvRegistryEntry(TypedDict, total=False): "code_jaccard": { "actor_class_fqn": "nemo_rl.environments.code_jaccard_environment.CodeJaccardEnvironment", }, + "vlm": { + "actor_class_fqn": "nemo_rl.environments.vlm_environment.VLMEnvironment", + }, } @@ -93,7 +96,7 @@ def chunk_list_to_workers(to_chunk: list[Any], num_workers: int) -> list[list[An return chunks -def create_env(env_name: str, env_configs: dict) -> EnvironmentInterface: +def create_env(env_name: str, env_config: dict) -> EnvironmentInterface: assert env_name in ENV_REGISTRY, ( f"Env name {env_name} is not registered in ENV_REGISTRY. Please call register_env() to register the environment." ) @@ -104,7 +107,7 @@ def create_env(env_name: str, env_configs: dict) -> EnvironmentInterface: "py_executable": get_actor_python_env(actor_class_fqn), "env_vars": dict(os.environ), } - ).remote(env_configs[env_name]) + ).remote(env_config) return env From ec862a356ed836a2b420df5135ae3520d636be8e Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Mon, 12 Jan 2026 01:44:01 -0800 Subject: [PATCH 39/41] fix unit test Signed-off-by: Yuki Huang --- docs/guides/grpo.md | 24 ++++++++++++------- nemo_rl/data/__init__.py | 2 +- tests/unit/algorithms/test_sft.py | 7 ------ .../test_code_jaccard_environment.py | 2 +- 4 files changed, 17 insertions(+), 18 deletions(-) diff --git a/docs/guides/grpo.md b/docs/guides/grpo.md index bbc2db3d63..b82012fea6 100755 --- a/docs/guides/grpo.md +++ b/docs/guides/grpo.md @@ -141,16 +141,19 @@ Then, you can set the data up as follows: ```python -# 1) Select environment from data config -env_name = data_config["env_name"] -env = create_env(env_name=env_name, env_configs=env_configs) +# 1) Setup environments from data config +env_name_list = extract_necessary_env_names(data_config) +envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list +} # 2) Load dataset using the helper (built-ins or local/HF datasets) data = load_response_dataset(data_config["train"]) # 3) Build task mapping task_data_processors = {data.task_name: (data.task_spec, data.processor)} -task_to_env = {data.task_name: env} +task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} # 4) Construct processed dataset dataset = AllTaskProcessedDataset( @@ -166,6 +169,7 @@ if data_config["validation"] is not None: val_data = load_response_dataset(data_config["validation"]) val_task_data_processors = {val_data.task_name: (val_data.task_spec, val_data.processor)} + val_task_to_env = {val_data.task_name: envs[data_config["validation"]["env_name"]]} val_dataset = AllTaskProcessedDataset( val_data.dataset, @@ -187,7 +191,7 @@ For more information about environments, see the [Environments Guide](environmen ### Env–Task Mapping - env: - - The environment actor for reward/evaluation, constructed using `create_env(env_name=..., env_configs=...)`. + - The environment actor for reward/evaluation, constructed using `create_env(env_name=..., env_config=...)`. - The environment to use is declared under the data section of the config (e.g., `data.env_name` states which env the dataset uses). - task_to_env: - Dict mapping: task_name -> env. In the current single-task setup this typically points all tasks to the same env, but this structure enables different envs per task in future multi-task scenarios. @@ -195,11 +199,13 @@ For more information about environments, see the [Environments Guide](environmen Example (simplified): ```python -env_name = data_config["env_name"] # declared under config.data -env = create_env(env_name=env_name, env_configs=env_configs) +env_name_list = extract_necessary_env_names(data_config) +envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list +} -task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: env) -task_to_env[task_name] = env +task_to_env[task_name] = envs[data_config["train"]["env_name"]] val_task_to_env = task_to_env # validation usually mirrors training mapping ``` diff --git a/nemo_rl/data/__init__.py b/nemo_rl/data/__init__.py index 17efad5351..63322b8fea 100644 --- a/nemo_rl/data/__init__.py +++ b/nemo_rl/data/__init__.py @@ -16,7 +16,7 @@ class ResponseDatasetConfig(TypedDict): - dataset_name: str + dataset_name: NotRequired[str] data_path: NotRequired[str] input_key: NotRequired[str] output_key: NotRequired[str] diff --git a/tests/unit/algorithms/test_sft.py b/tests/unit/algorithms/test_sft.py index 83d0cf20c4..fffd06187d 100644 --- a/tests/unit/algorithms/test_sft.py +++ b/tests/unit/algorithms/test_sft.py @@ -61,7 +61,6 @@ def val_iter(self): loss_fn = NLLLoss() logger = MagicMock() checkpointer = MagicMock() - sft_task_spec = MagicMock() # Create mock master config master_config = { @@ -97,7 +96,6 @@ def val_iter(self): "loss_fn": loss_fn, "logger": logger, "checkpointer": checkpointer, - "sft_task_spec": sft_task_spec, "master_config": master_config, } @@ -118,7 +116,6 @@ def test_exit_on_max_steps(mock_components): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) @@ -144,7 +141,6 @@ def test_exit_on_max_epochs(mock_components): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) @@ -178,7 +174,6 @@ def test_exit_on_timeout(mock_components, capsys): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) @@ -223,7 +218,6 @@ def test_training_with_disabled_validation(mock_components): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) @@ -247,7 +241,6 @@ def test_training_with_negative_val_period(mock_components): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) diff --git a/tests/unit/environments/test_code_jaccard_environment.py b/tests/unit/environments/test_code_jaccard_environment.py index f2af133585..0880fcc6f6 100644 --- a/tests/unit/environments/test_code_jaccard_environment.py +++ b/tests/unit/environments/test_code_jaccard_environment.py @@ -28,7 +28,7 @@ def code_jaccard_env_config(): @pytest.fixture(scope="module") def code_jaccard_env(code_jaccard_env_config): - env = create_env("code_jaccard", {"code_jaccard": code_jaccard_env_config}) + env = create_env("code_jaccard", code_jaccard_env_config) yield env env.shutdown.remote() ray.kill(env) From 02017ae474fdc31f01110a21242f05dca4ece43a Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Mon, 12 Jan 2026 19:23:13 -0800 Subject: [PATCH 40/41] check validation in data config Signed-off-by: Yuki Huang --- docs/guides/grpo.md | 2 +- examples/run_distillation_math.py | 2 +- examples/run_grpo.py | 2 +- examples/run_grpo_math.py | 2 +- examples/run_grpo_rm.py | 2 +- examples/run_sft.py | 2 +- examples/run_vlm_grpo.py | 2 +- 7 files changed, 7 insertions(+), 7 deletions(-) diff --git a/docs/guides/grpo.md b/docs/guides/grpo.md index b82012fea6..b27d68f49d 100755 --- a/docs/guides/grpo.md +++ b/docs/guides/grpo.md @@ -165,7 +165,7 @@ dataset = AllTaskProcessedDataset( ) # 5) Do the same thing for validation dataset if it exists -if data_config["validation"] is not None: +if "validation" in data_config and data_config["validation"] is not None: val_data = load_response_dataset(data_config["validation"]) val_task_data_processors = {val_data.task_name: (val_data.task_spec, val_data.processor)} diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index 017d92fbb1..579fd917fe 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -111,7 +111,7 @@ def setup_data( val_task_to_env = task_to_env.copy() # validation dataset from config - if data_config["validation"] is not None: + if "validation" in data_config and data_config["validation"] is not None: if "default" in data_config: update_single_dataset_config( data_config["validation"], data_config["default"] diff --git a/examples/run_grpo.py b/examples/run_grpo.py index 2c31f9eea9..6683fed8b2 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -110,7 +110,7 @@ def setup_data( val_task_to_env = task_to_env.copy() # validation dataset from config - if data_config["validation"] is not None: + if "validation" in data_config and data_config["validation"] is not None: if "default" in data_config: update_single_dataset_config( data_config["validation"], data_config["default"] diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index cafe2d387a..2633800607 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -110,7 +110,7 @@ def setup_data( val_task_to_env = task_to_env.copy() # validation dataset from config - if data_config["validation"] is not None: + if "validation" in data_config and data_config["validation"] is not None: if "default" in data_config: update_single_dataset_config( data_config["validation"], data_config["default"] diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index 9b6e04d21f..204ceb3b7f 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -116,7 +116,7 @@ def setup_data( val_task_to_env = task_to_env.copy() # validation dataset from config - if data_config["validation"] is not None: + if "validation" in data_config and data_config["validation"] is not None: if "default" in data_config: update_single_dataset_config( data_config["validation"], data_config["default"] diff --git a/examples/run_sft.py b/examples/run_sft.py index 055e97f1a8..d8911ecfce 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -93,7 +93,7 @@ def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): val_task_data_processors = task_data_processors.copy() # validation dataset from config - if data_config["validation"] is not None: + if "validation" in data_config and data_config["validation"] is not None: if "default" in data_config: update_single_dataset_config( data_config["validation"], data_config["default"] diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index eacd66033f..6b0d61cc75 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -105,7 +105,7 @@ def setup_data( val_task_to_env = task_to_env.copy() # validation dataset from config - if data_config["validation"] is not None: + if "validation" in data_config and data_config["validation"] is not None: if "default" in data_config: update_single_dataset_config( data_config["validation"], data_config["default"] From f42ae9957d7bd0ea85a0e652afc0fe5d82ba0bcc Mon Sep 17 00:00:00 2001 From: Yuki Huang Date: Wed, 21 Jan 2026 08:05:08 -0800 Subject: [PATCH 41/41] fix rebase Signed-off-by: Yuki Huang --- .../recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml index b6d9751a67..b2b76c0afd 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml @@ -29,9 +29,12 @@ policy: max_total_sequence_length: 4096 make_sequence_length_divisible_by: 2 data: - dataset_name: tulu3_sft_mixture add_generation_prompt: true - seed: 42 + train: + dataset_name: tulu3_sft_mixture + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null logger: log_dir: logs/sft-tmblog-llama3.1-8b tensorboard_enabled: false