diff --git a/docs/guides/grpo.md b/docs/guides/grpo.md index 08a2d5fc19..b27d68f49d 100755 --- a/docs/guides/grpo.md +++ b/docs/guides/grpo.md @@ -38,18 +38,43 @@ To support this, we need to know: #### Dataset -By default, NeMo RL has support for [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py) and [DeepScaler](../../nemo_rl/data/datasets/response_datasets/deepscaler.py) datasets. Both of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. +By default, NeMo RL has some built-in supported datasets (e.g., [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py), etc.). You can see the full list [here](../../nemo_rl/data/datasets/response_datasets/__init__.py). +All of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with JSONL-formatted response datasets for loading datasets from local path or Hugging Face. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml data: - dataset_name: ResponseDataset - train_data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - val_data_path: - input_key: , default is "input" - output_key: , default is "output" - train_split: , default is None # used for HuggingFace datasets - val_split: , default is None # used for HuggingFace datasets + # other data settings, see `examples/configs/grpo_math_1B.yaml` for more details + ... + # dataset settings + train: + # this dataset will override input_key and use the default values for other vars + data_path: /path/to/local/train_dataset.jsonl # local file or hf_org/hf_dataset_name (HuggingFace) + input_key: question + split: train # used for HuggingFace datasets + split_validation_size: 0.05 # use 5% of the training data as validation data + seed: 42 # seed for train/validation split when split_validation_size > 0 + validation: + # this dataset will use the default values for other vars except data_path + data_path: /path/to/local/val_dataset.jsonl + default: + # will use below vars as default values if dataset doesn't specify it + dataset_name: ResponseDataset + input_key: input + output_key: output + prompt_file: null + system_prompt_file: null + processor: "math_hf_data_processor" + env_name: "math" +``` + +We support using a single dataset for both train and validation by using `split_validation_size` to set the validation ratio. +[OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py), [Tulu3SftMixtureDataset](../../nemo_rl/data/datasets/response_datasets/tulu3.py) are supported for this feature. +If you want to support this feature for your custom datasets or other built-in datasets, you can simply add the code to the dataset like [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py). +```python +# `self.val_dataset` is used (not None) only when current dataset is used for both training and validation +self.val_dataset = None +self.split_train_validation(split_validation_size, seed) ``` #### Common Data Format @@ -89,31 +114,19 @@ We have an example of this as `math_data_processor` in [processors.py](../../nem - task_name (unique task identifier): - Determines which processor, env, prompts, and dataset to use for this task. - - Currently, we support a single dataset and a single environment. Therefore, task_name equals the dataset_name in config (i.e., config.data.dataset_name). + - Currently, we support a single dataset and a single environment. Therefore, task_name equals the dataset_name in the config (i.e., config.data.dataset_name). - task_spec (TaskDataSpec): - - Specifies per-task system prompt and prompt (with defaults applied from a global spec when unspecified). + - Specifies per-task system prompt and prompt. - task_data_processors: - Dict mapping: task_name -> (task_spec, processor_fn). - - Typical flow: provide a default mapping using defaultdict, then explicitly register the dataset-provided processor under the resolved task_name. +- task_to_env: + - Dict mapping: task_name -> task_env. Example (simplified): ```python -default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], -) - -task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = defaultdict( - lambda: (default_task_spec, math_hf_data_processor) -) - -# Resolve task_name from dataset or spec -task_spec = data.task_spec -task_name = data.task_name -assert hasattr(data, "processor"), "Dataset must have a processor attribute" -task_data_processors[task_name] = (task_spec, data.processor) +task_data_processors = {data.task_name: (data.task_spec, data.processor)} +task_to_env = {data.task_name: env} ``` #### Putting It All Together @@ -128,50 +141,43 @@ Then, you can set the data up as follows: ```python -# 1) Select environment from data config -env_name = data_config["env_name"] -env = create_env(env_name=env_name, env_configs=env_configs) +# 1) Setup environments from data config +env_name_list = extract_necessary_env_names(data_config) +envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list +} -# 2) Build default TaskDataSpec from config (prompts loaded from files if present) -default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], -) - -# 3) Define default processor mapping -task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = defaultdict( - lambda: (default_task_spec, math_hf_data_processor) -) - -# 4) Load dataset using the helper (built-ins or local/HF datasets) -data = load_response_dataset(data_config, seed) +# 2) Load dataset using the helper (built-ins or local/HF datasets) +data = load_response_dataset(data_config["train"]) -# 5) Resolve task spec/name and ensure dataset provides a processor -task_spec = data.task_spec -task_name = data.task_name -assert hasattr(data, "processor"), "Dataset must have a processor attribute" -task_data_processors[task_name] = (task_spec, data.processor) +# 3) Build task mapping +task_data_processors = {data.task_name: (data.task_spec, data.processor)} +task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} -# 6) Construct processed datasets (train and optional validation) +# 4) Construct processed dataset dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, - default_task_spec, + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) -val_dataset = ( - AllTaskProcessedDataset( - data.formatted_ds["validation"], + +# 5) Do the same thing for validation dataset if it exists +if "validation" in data_config and data_config["validation"] is not None: + val_data = load_response_dataset(data_config["validation"]) + + val_task_data_processors = {val_data.task_name: (val_data.task_spec, val_data.processor)} + val_task_to_env = {val_data.task_name: envs[data_config["validation"]["env_name"]]} + + val_dataset = AllTaskProcessedDataset( + val_data.dataset, tokenizer, - default_task_spec, - task_data_processors, + None, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - if data.formatted_ds["validation"] - else None -) ``` Ensure you provide a mapping of tasks to their processors so the dataset knows which processor to use when handling samples. @@ -185,7 +191,7 @@ For more information about environments, see the [Environments Guide](environmen ### Env–Task Mapping - env: - - The environment actor for reward/evaluation, constructed using `create_env(env_name=..., env_configs=...)`. + - The environment actor for reward/evaluation, constructed using `create_env(env_name=..., env_config=...)`. - The environment to use is declared under the data section of the config (e.g., `data.env_name` states which env the dataset uses). - task_to_env: - Dict mapping: task_name -> env. In the current single-task setup this typically points all tasks to the same env, but this structure enables different envs per task in future multi-task scenarios. @@ -193,11 +199,13 @@ For more information about environments, see the [Environments Guide](environmen Example (simplified): ```python -env_name = data_config["env_name"] # declared under config.data -env = create_env(env_name=env_name, env_configs=env_configs) +env_name_list = extract_necessary_env_names(data_config) +envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list +} -task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: env) -task_to_env[task_name] = env +task_to_env[task_name] = envs[data_config["train"]["env_name"]] val_task_to_env = task_to_env # validation usually mirrors training mapping ``` @@ -335,7 +343,7 @@ $$ \text{token-mult-prob-error} = \frac{1}{n}\sum_{i=1}^{n\text{(tokens)}}\exp\left(\left\|\text{log-train-fwk}_i - \text{logprobs-inference-fwk}_i\right\|\right) $$ -Intuitively, this measures the average multiplicative probability error for sampled tokens, where samples are drawn as $x \sim \pi_{\text{inference-framework}}$. The purpose of this is to highlight any obvious sampling errors or discrepencies between the inference backend and training framework. If it trends upward steeply over the course of training past $\sim 1-2\%$, there is usually a problem with how your weights are being updated. If very spiky, it can indicate a bug in the inference framework or buggy weight refitting. +Intuitively, this measures the average multiplicative probability error for sampled tokens, where samples are drawn as $x \sim \pi_{\text{inference-framework}}$. The purpose of this is to highlight any obvious sampling errors or discrepancies between the inference backend and training framework. If it trends upward steeply over the course of training past $\sim 1-2\%$, there is usually a problem with how your weights are being updated. If these metrics are very spiky, they can indicate a bug in the inference framework or buggy weight refitting. ### KL Divergence Error This feature is controlled by the following metrics: @@ -346,7 +354,7 @@ This feature is controlled by the following metrics: * `js_divergence_error` or (Jensen–Shannon divergence): $(D_{\text{KL}}(P_{policy} || P_{m}) + D_{\text{KL}}(P_{gen} || P_{m})) / 2$, where $P_{m} = (P_{policy} + P_{gen}) / 2$ - uses the mean mixture distribution as reference -According to the paper [When Speed Kills Stability: Demystifying RL Collapse from the Training-Inference Mismatch](https://yingru.notion.site/When-Speed-Kills-Stability-Demystifying-RL-Collapse-from-the-Training-Inference-Mismatch-271211a558b7808d8b12d403fd15edda), `gen_kl_error` was introduced (referred to as `vllm-kl` in the paper) as the key metric to measure mismatch between policy and generation distribution. Empirically, the mismatch is approximately 1e-3, and the divergence is larger for low-probability tokens as predicted by the generation inference engine (like vLLM). +According to the paper [When Speed Kills Stability: Demystifying RL Collapse from the Training-Inference Mismatch](https://yingru.notion.site/When-Speed-Kills-Stability-Demystifying-RL-Collapse-from-the-Training-Inference-Mismatch-271211a558b7808d8b12d403fd15edda), `gen_kl_error` was introduced (referred to as `vllm-kl` in the paper) as the key metric to measure the mismatch between the policy and generation distributions. Empirically, the mismatch is approximately 1e-3, and the divergence is larger for low-probability tokens as predicted by the generation inference engine (like vLLM). The three divergence metrics provide complementary perspectives on distribution mismatch. For example: @@ -371,7 +379,7 @@ This feature is controlled by the parameter `sampling_importance_ratio`. It adju This is simply $\frac{1}{|T|}\sum_{t \in \text{tokens}}\text{exp}(\text{log}(\pi_{\text{training}}(t)) - \text{log}(\pi_{\text{inference}}(t)))$ -Similar to [Multiplicative Token Probability Error](#multiplicative-token-probability-error), this is a measure of how far off your inference backend is from your training framework. However, this metric is meant to find the bias in that error instead of loosely the variance as it does not take the absolute value of the error. With some noise, this should hover around 1. +Similar to [Multiplicative Token Probability Error](#multiplicative-token-probability-error), this is a measure of how far off your inference backend is from your training framework. However, this metric is meant to find the bias in that error, rather than the variance, as it does not take the absolute value of the error. With some noise, this should hover around 1. This metric is always calculated and the per-token version (without the mean) is used in the loss function when [Importance Sampling Correction](#importance-sampling-correction) is enabled. diff --git a/docs/guides/sft.md b/docs/guides/sft.md index 81e68d5cc3..2d74914ca2 100644 --- a/docs/guides/sft.md +++ b/docs/guides/sft.md @@ -37,7 +37,7 @@ SFT datasets in NeMo RL are encapsulated using classes. Each SFT data class is e SFT datasets are expected to follow the HuggingFace chat format. Refer to the [chat dataset document](../design-docs/chat-datasets.md) for details. If your data is not in the correct format, simply write a preprocessing script to convert the data into this format. [response_datasets/squad.py](../../nemo_rl/data/datasets/response_datasets/squad.py) has an example: ```python -def format_squad(data): +def format_data(self, data: dict[str, Any]) -> dict[str, Any]: return { "messages": [ { @@ -56,7 +56,7 @@ def format_squad(data): } ``` -NeMo RL SFT uses HuggingFace chat templates to format the individual examples. Three types of chat templates are supported, which can be configured via `tokenizer.chat_template` in your yaml config (see [sft.yaml](../../examples/configs/sft.yaml) for an example): +NeMo RL SFT uses Hugging Face chat templates to format the individual examples. Three types of chat templates are supported, which can be configured using the `tokenizer.chat_template` in your YAML config (see [sft.yaml](../../examples/configs/sft.yaml) for an example): 1. Apply the tokenizer's default chat template. To use the tokenizer's default, either omit `tokenizer.chat_template` from the config altogether, or set `tokenizer.chat_template="default"`. 2. Use a "passthrough" template which simply concatenates all messages. This is desirable if the chat template has been applied to your dataset as an offline preprocessing step. In this case, you should set `tokenizer.chat_template` to None as follows: @@ -64,25 +64,49 @@ NeMo RL SFT uses HuggingFace chat templates to format the individual examples. T tokenizer: chat_template: NULL ``` -3. Use a custom template: If you would like to use a custom template, create a string template in [jinja format](https://huggingface.co/docs/transformers/v4.34.0/en/chat_templating#how-do-i-create-a-chat-template), and add that string to the config. For example, +3. Use a custom template: If you would like to use a custom template, create a string template in [Jinja format](https://huggingface.co/docs/transformers/v4.34.0/en/chat_templating#how-do-i-create-a-chat-template), and add that string to the config. For example, ```yaml tokenizer: custom_template: "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer: '}}{%- elif message['role'] == 'assistant' %}{{message['content'].strip()}}{%- endif %}{% endfor %}" ``` -By default, NeMo RL has support for [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py) and [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py) datasets. All of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. +By default, NeMo RL has some built-in supported datasets (e.g., [OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [Squad](../../nemo_rl/data/datasets/response_datasets/squad.py), etc.), you can see the full list [here](../../nemo_rl/data/datasets/response_datasets/__init__.py). +All of these datasets are downloaded from HuggingFace and preprocessed on-the-fly, so there's no need to provide a path to any datasets on disk. -We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with jsonl-formatted response datasets for loading datasets from local path or HuggingFace. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: +We provide a [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py) class that is compatible with JSONL-formatted response datasets for loading datasets from local path or Hugging Face. You can use `input_key`, `output_key` to specify which fields in your data correspond to the question and answer respectively. Here's an example configuration: ```yaml data: - dataset_name: ResponseDataset - train_data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - val_data_path: - input_key: , default is "input" - output_key: , default is "output" - train_split: , default is None # used for HuggingFace datasets - val_split: , default is None # used for HuggingFace datasets + # other data settings, see `examples/configs/sft.yaml` for more details + ... + # dataset settings + train: + # this dataset will override input_key and use the default values for other vars + data_path: /path/to/local/train_dataset.jsonl # local file or hf_org/hf_dataset_name (HuggingFace) + input_key: question + split: train # used for HuggingFace datasets + split_validation_size: 0.05 # use 5% of the training data as validation data + seed: 42 # seed for train/validation split when split_validation_size > 0 + validation: + # this dataset will use the default values for other vars except data_path + data_path: /path/to/local/val_dataset.jsonl + default: + # will use below vars as default values if dataset doesn't specify it + dataset_name: ResponseDataset + input_key: input + output_key: output + prompt_file: null + system_prompt_file: null + processor: "sft_processor" +``` + +We support using a single dataset for both train and validation by using `split_validation_size` to set the ratio of validation. +[OpenAssistant](../../nemo_rl/data/datasets/response_datasets/oasst.py), [OpenMathInstruct-2](../../nemo_rl/data/datasets/response_datasets/openmathinstruct2.py), [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py), [Tulu3SftMixtureDataset](../../nemo_rl/data/datasets/response_datasets/tulu3.py) are supported for this feature. +If you want to support this feature for your custom datasets or other built-in datasets, you can simply add the code to the dataset like [ResponseDataset](../../nemo_rl/data/datasets/response_datasets/response_dataset.py). +```python +# `self.val_dataset` is used (not None) only when current dataset is used for both training and validation +self.val_dataset = None +self.split_train_validation(split_validation_size, seed) ``` ### OpenAI Format Datasets (with Tool Calling Support) @@ -95,14 +119,16 @@ To use an OpenAI format dataset, configure your YAML as follows: ```yaml data: - dataset_name: openai_format - train_data_path: "/path/to/train.jsonl" # Path to training data - val_data_path: "/path/to/val.jsonl" # Path to validation data - chat_key: "messages" # Key for messages in the data (default: "messages") - system_key: null # Key for system message in the data (optional) - system_prompt: null # Default system prompt if not in data (optional) - tool_key: "tools" # Key for tools in the data (default: "tools") - use_preserving_dataset: false # Set to true for heterogeneous tool schemas (see below) + train: + dataset_name: openai_format + data_path: # Path to training data + chat_key: "messages" # Key for messages in the data (default: "messages") + system_key: null # Key for system message in the data (optional) + system_prompt: null # Default system prompt if not in data (optional) + tool_key: "tools" # Key for tools in the data (default: "tools") + use_preserving_dataset: false # Set to true for heterogeneous tool schemas (see below) + validation: + ... ``` #### Data Format @@ -169,7 +195,7 @@ NeMo RL supports LoRA (Low-Rank Adaptation) for parameter-efficient fine-tuning. Notes: - LoRA is supported with DTensor v2 and Megatron backends. Uses the DTensor backend by default. DTensor v1 does not support LoRA (ensure `policy.dtensor_cfg._v2=true` when using DTensor). -- Triton kernels are only used in the DTensor v2 path. For TP > 1, Automodel currently does not support Triton kernels (see note below). +- Triton kernels are only used in the DTensor v2 path. For `tensor_parallel_size > 1`, Automodel currently does not support Triton kernels (see note below). ### DTensor Configuration Parameters diff --git a/examples/configs/distillation_math.yaml b/examples/configs/distillation_math.yaml index 9e32814a62..078b2bef96 100644 --- a/examples/configs/distillation_math.yaml +++ b/examples/configs/distillation_math.yaml @@ -209,11 +209,20 @@ teacher: data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len - prompt_file: "examples/prompts/cot.txt" - system_prompt_file: null - dataset_name: "DeepScaler" shuffle: true + # dataset + train: + dataset_name: DeepScaler + validation: + dataset_name: AIME2024 + repeat: 16 + # default settings for all datasets + default: + prompt_file: "examples/prompts/cot.txt" + system_prompt_file: null + env_name: "math" + env: math: num_workers: 8 @@ -228,12 +237,12 @@ logger: monitor_gpus: true wandb: project: "nemo-distillation" - name: "distillation-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + name: "distillation-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" swanlab: project: "nemo-distillation" - name: "distillation-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + name: "distillation-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" tensorboard: - log_dir: "tb_logs-distillation-${data.dataset_name}" + log_dir: "tb_logs-distillation-${data.train.dataset_name}" mlflow: experiment_name: "distillation-dev" run_name: "distillation-math-cl-logger" diff --git a/examples/configs/distillation_math_megatron.yaml b/examples/configs/distillation_math_megatron.yaml index 04802ac0ca..ae2fbcd3e1 100644 --- a/examples/configs/distillation_math_megatron.yaml +++ b/examples/configs/distillation_math_megatron.yaml @@ -150,11 +150,11 @@ logger: wandb_enabled: true wandb: project: "nemo-distillation" - name: "distillation-megatron-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + name: "distillation-megatron-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" tensorboard: - log_dir: "tb_logs-distillation-megatron-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + log_dir: "tb_logs-distillation-megatron-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" mlflow: - run_name: "distillation-math-megatron-${data.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" + run_name: "distillation-math-megatron-${data.train.dataset_name}-${teacher.model_name}-${policy.model_name}-${loss_fn.kl_type}-${distillation.topk_logits_k}" cluster: gpus_per_node: 8 diff --git a/examples/configs/grpo_math_1B.yaml b/examples/configs/grpo_math_1B.yaml index 52de51905c..a7a9fe86b6 100644 --- a/examples/configs/grpo_math_1B.yaml +++ b/examples/configs/grpo_math_1B.yaml @@ -258,22 +258,38 @@ policy: data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len - prompt_file: "examples/prompts/cot.txt" - system_prompt_file: null shuffle: true num_workers: 1 - processor: "math_hf_data_processor" - env_name: "math" - dataset_name: "OpenMathInstruct-2" + + # dataset + train: + dataset_name: OpenMathInstruct-2 + split_validation_size: 0.05 # use 5% of the training data as validation data + seed: ${grpo.seed} # seed for train/validation split when split_validation_size > 0 + validation: null + # default settings for all datasets + default: + prompt_file: "examples/prompts/cot.txt" + system_prompt_file: null + processor: "math_hf_data_processor" + env_name: "math" # You can use custom response datasets for training and validation. For example: - # data: - # dataset_name: ResponseDataset - # train_data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - # val_data_path: - # input_key: , default is "input" - # output_key: , default is "output" - # train_split: , default is None # used for HuggingFace datasets - # val_split: , default is None # used for HuggingFace datasets + # train: + # # this dataset will override input_key and use the default values for other vars + # data_path: /path/to/local/train_dataset.jsonl + # input_key: question + # validation: + # # this dataset will use the default values for other vars except data_path + # data_path: /path/to/local/val_dataset.jsonl + # default: + # # will use below vars as default values if dataset doesn't specify it + # dataset_name: ResponseDataset + # input_key: input + # output_key: output + # prompt_file: null + # system_prompt_file: null + # processor: "math_hf_data_processor" + # env_name: math # See https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#datasets for more details. env: diff --git a/examples/configs/grpo_math_1B_megatron.yaml b/examples/configs/grpo_math_1B_megatron.yaml index 2b7d4473b4..bb51d50942 100644 --- a/examples/configs/grpo_math_1B_megatron.yaml +++ b/examples/configs/grpo_math_1B_megatron.yaml @@ -160,13 +160,6 @@ policy: gpu_memory_utilization: 0.6 max_model_len: ${policy.max_total_sequence_length} -data: - max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len - prompt_file: "examples/prompts/cot.txt" - system_prompt_file: null - dataset_name: "OpenMathInstruct-2" - shuffle: true - env: math: num_workers: 8 diff --git a/examples/configs/grpo_rm_1B.yaml b/examples/configs/grpo_rm_1B.yaml index b0a709b253..61e6204b9a 100644 --- a/examples/configs/grpo_rm_1B.yaml +++ b/examples/configs/grpo_rm_1B.yaml @@ -2,7 +2,8 @@ defaults: "grpo_math_1B.yaml" data: - env_name: "reward_model" + default: + env_name: "reward_model" env: reward_model: diff --git a/examples/configs/grpo_sliding_puzzle.yaml b/examples/configs/grpo_sliding_puzzle.yaml index 54e03ae524..edfc1096d1 100644 --- a/examples/configs/grpo_sliding_puzzle.yaml +++ b/examples/configs/grpo_sliding_puzzle.yaml @@ -77,4 +77,4 @@ logger: run_name: "grpo-dev-sliding_puzzle" gpu_monitoring: collection_interval: 10 # How often to collect GPU usage metrics (in seconds) - flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds) \ No newline at end of file + flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds) diff --git a/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml b/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml index ffc65b5cae..9035a3598c 100644 --- a/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml +++ b/examples/configs/recipes/llm/dapo-qwen2.5-7b.yaml @@ -75,8 +75,12 @@ policy: enforce_eager: true data: max_input_seq_length: 2048 - prompt_file: null - dataset_name: DAPOMath17K + train: + dataset_name: DAPOMath17K + validation: + dataset_name: DAPOMathAIME2024 + default: + prompt_file: null env: math: num_workers: 16 diff --git a/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml b/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml index bc636d931f..8d19757d54 100644 --- a/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml +++ b/examples/configs/recipes/llm/grpo-dapomath17k-dsv3-megatron.yaml @@ -41,8 +41,12 @@ policy: async_engine: true tensor_parallel_size: 32 data: - prompt_file: null - dataset_name: DAPOMath17K + train: + dataset_name: DAPOMath17K + validation: + dataset_name: DAPOMathAIME2024 + default: + prompt_file: null logger: monitor_gpus: false wandb: diff --git a/examples/configs/recipes/llm/grpo-deepscaler-1.5b-8K.yaml b/examples/configs/recipes/llm/grpo-deepscaler-1.5b-8K.yaml index 584b807663..ca29b07aac 100644 --- a/examples/configs/recipes/llm/grpo-deepscaler-1.5b-8K.yaml +++ b/examples/configs/recipes/llm/grpo-deepscaler-1.5b-8K.yaml @@ -28,7 +28,11 @@ policy: compilation_config: use_inductor: false data: - dataset_name: DeepScaler + train: + dataset_name: DeepScaler + validation: + dataset_name: AIME2024 + repeat: 16 env: math: num_workers: 16 diff --git a/examples/configs/recipes/llm/grpo-gspo-deepscaler-1.5b-8K.yaml b/examples/configs/recipes/llm/grpo-gspo-deepscaler-1.5b-8K.yaml index d5525fc027..e98d7d4680 100644 --- a/examples/configs/recipes/llm/grpo-gspo-deepscaler-1.5b-8K.yaml +++ b/examples/configs/recipes/llm/grpo-gspo-deepscaler-1.5b-8K.yaml @@ -30,7 +30,11 @@ policy: vllm_cfg: enforce_eager: true data: - dataset_name: DeepScaler + train: + dataset_name: DeepScaler + validation: + dataset_name: AIME2024 + repeat: 16 env: math: num_workers: 16 diff --git a/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled b/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled index b1f65495fa..f442856807 100644 --- a/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled +++ b/examples/configs/recipes/llm/grpo-helpsteer3-llama-3.3-nemotron-super-49b-v1.5-8n8g-fsdp2tp8cp4.yaml.disabled @@ -44,11 +44,16 @@ policy: data: # Training with HelpSteer3 will lead to high logprob error. # ISSUE: https://github.com/NVIDIA-NeMo/RL/issues/1570 - prompt_file: null - dataset_name: HelpSteer3 - split: preference - env_name: "code_jaccard" - processor: helpsteer3_data_processor + train: + dataset_name: HelpSteer3 + split: train + validation: + dataset_name: HelpSteer3 + split: validation + default: + prompt_file: null + env_name: "code_jaccard" + processor: helpsteer3_data_processor env: code_jaccard: num_workers: 8 diff --git a/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml b/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml index 78b4597c2c..69ff4a4229 100644 --- a/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml +++ b/examples/configs/recipes/llm/grpo-qwen3-8b-base-1n8g-fp8-kvcache-megatron.yaml @@ -37,8 +37,12 @@ policy: use_deep_gemm: true data: max_input_seq_length: 2048 - prompt_file: null - dataset_name: DAPOMath17K + train: + dataset_name: DAPOMath17K + validation: + dataset_name: DAPOMathAIME2024 + default: + prompt_file: null env: dapo: num_workers: 16 diff --git a/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml b/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml index aa009da464..bb43955812 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-70b-8n8g-tp4pp2-long-megatron.yaml @@ -43,12 +43,16 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: monitor_gpus: false wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml index 88d446283d..a5745e983d 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-dynamicbatch.yaml @@ -28,18 +28,22 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long wandb: project: nemo-rl name: sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long tensorboard: - log_dir: tb_logs-sft-dev-squad + log_dir: tb_logs-sft-dev-openmathinstruct2 cluster: gpus_per_node: 8 diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml index 86db9da5e0..0e627a2aed 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-long.yaml @@ -24,18 +24,22 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long wandb: project: nemo-rl name: sft-llama3.1-8b-instruct-1n8g-fsdp2tp1-long tensorboard: - log_dir: tb_logs-sft-dev-squad + log_dir: tb_logs-sft-dev-openmathinstruct2 cluster: gpus_per_node: 8 diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml index 784e4a02d5..093b22051a 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp1-lora.yaml @@ -26,9 +26,12 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: tulu3_sft_mixture add_generation_prompt: true - seed: 42 + train: + dataset_name: tulu3_sft_mixture + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null logger: log_dir: logs/sft-tmblog-llama3.1-8b tensorboard_enabled: false diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml index 31b7538c1c..7d179fa103 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-fsdp2tp2.yaml @@ -22,12 +22,16 @@ policy: weight_decay: 0.01 eps: 1.0e-08 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-instruct-1n8g-fsdp2tp2 wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml index b6d9751a67..b2b76c0afd 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-lora.yaml @@ -29,9 +29,12 @@ policy: max_total_sequence_length: 4096 make_sequence_length_divisible_by: 2 data: - dataset_name: tulu3_sft_mixture add_generation_prompt: true - seed: 42 + train: + dataset_name: tulu3_sft_mixture + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null logger: log_dir: logs/sft-tmblog-llama3.1-8b tensorboard_enabled: false diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml index 3afca7ba02..aa62330e3e 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron-seqpack.yaml @@ -30,12 +30,16 @@ policy: scheduler: lr_warmup_init: 1.9999e-65 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-1n8g-megatron wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml index 2c08bef6f6..7e9452dff7 100644 --- a/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml +++ b/examples/configs/recipes/llm/sft-llama3.1-8b-1n8g-megatron.yaml @@ -28,12 +28,16 @@ policy: scheduler: lr_warmup_init: 1.9999e-65 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.1-8b-1n8g-megatron wandb: diff --git a/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml b/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml index 77ff8aac89..d7e56efda9 100644 --- a/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml +++ b/examples/configs/recipes/llm/sft-llama3.2-1b-1n8g-fsdp2tp1.v3.yaml @@ -9,12 +9,16 @@ policy: name: meta-llama/Llama-3.2-1B make_sequence_length_divisible_by: 1 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution - seed: 42 + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-llama3.2-1b-1n8g-fsdp2tp1 wandb: diff --git a/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled b/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled index d224a6d51f..1bf5502c21 100644 --- a/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled +++ b/examples/configs/recipes/llm/sft-nemotron-super-49b-8n8g-fsdp2tp4cp8-tulu-v3.yaml.disabled @@ -44,9 +44,12 @@ policy: - milestones: - 10 data: - dataset_name: tulu3_sft_mixture num_workers: 20 - test_size: 0.05 + train: + dataset_name: tulu3_sft_mixture + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null logger: tensorboard_enabled: false monitor_gpus: false diff --git a/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml b/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml index c94683c61f..8373a788ff 100644 --- a/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml +++ b/examples/configs/recipes/llm/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt.v3.yaml @@ -15,11 +15,16 @@ policy: tensor_parallel_size: 8 make_sequence_length_divisible_by: 8 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: log_dir: logs/sft-qwen2.5-32b-4n8g-fsdp2tp8sp-actckpt wandb: diff --git a/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml b/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml index 299e426084..d3bdd77bb2 100644 --- a/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml +++ b/examples/configs/recipes/llm/sft-qwen2.5-math7b-2n8g-megatron.yaml @@ -33,12 +33,17 @@ policy: enabled: true make_sequence_length_divisible_by: 32 data: - dataset_name: openmathinstruct2 - prompt_file: examples/prompts/math.txt - split: train_1M add_generation_prompt: true - output_key: generated_solution num_workers: 8 + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 + seed: ${sft.seed} + validation: null + default: + prompt_file: examples/prompts/math.txt logger: wandb: project: nemo-rl diff --git a/examples/configs/sft.yaml b/examples/configs/sft.yaml index 486841cdc2..728b1c47ff 100644 --- a/examples/configs/sft.yaml +++ b/examples/configs/sft.yaml @@ -182,24 +182,36 @@ data: shuffle: true num_workers: 1 - dataset_name: "squad" + # dataset + train: + dataset_name: "squad" + split: "train" + validation: + dataset_name: "squad" + split: "validation" + # default settings for all datasets + default: + prompt_file: null + system_prompt_file: null + processor: "sft_processor" # You can use custom response datasets for training and validation. For example: - # data: - # dataset_name: ResponseDataset - # train_data_path: # e.g., /path/to/local/dataset.jsonl or hf_org/hf_dataset_name (HuggingFace) - # val_data_path: - # input_key: , default is "input" - # output_key: , default is "output" - # train_split: , default is None # used for HuggingFace datasets - # val_split: , default is None # used for HuggingFace datasets + # train: + # # this dataset will override input_key and use the default values for other vars + # data_path: /path/to/local/train_dataset.jsonl + # input_key: question + # validation: + # # this dataset will use the default values for other vars except data_path + # data_path: /path/to/local/val_dataset.jsonl + # default: + # # will use below vars as default values if dataset doesn't specify it + # dataset_name: ResponseDataset + # input_key: input + # output_key: output + # prompt_file: null + # system_prompt_file: null + # processor: "sft_processor" # See https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/sft.md#datasets for more details. - ## unused with squad dataset - prompt_file: null - split: null - output_key: null - seed: null - ## OpenAI format specific configs # train_data_path: "/path/to/train.jsonl" # Path to training data @@ -219,15 +231,15 @@ logger: monitor_gpus: true # If true, will monitor GPU usage and log to wandb and/or tensorboard wandb: project: "sft-dev" - name: "sft-dev-${data.dataset_name}" + name: "sft-dev-${data.train.dataset_name}" swanlab: project: "sft-dev" - name: "sft-dev-${data.dataset_name}" + name: "sft-dev-${data.train.dataset_name}" tensorboard: - log_dir: "tb_logs-sft-dev-${data.dataset_name}" + log_dir: "tb_logs-sft-dev-${data.train.dataset_name}" mlflow: experiment_name: "sft-dev" - run_name: "sft-dev-${data.dataset_name}" + run_name: "sft-dev-${data.train.dataset_name}" gpu_monitoring: collection_interval: 10 # How often to collect GPU usage metrics (in seconds) flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds) diff --git a/examples/configs/sft_openmathinstruct2.yaml b/examples/configs/sft_openmathinstruct2.yaml index 25368f7df5..fee5e7a06d 100644 --- a/examples/configs/sft_openmathinstruct2.yaml +++ b/examples/configs/sft_openmathinstruct2.yaml @@ -69,15 +69,23 @@ policy: data: max_input_seq_length: ${policy.max_total_sequence_length} - dataset_name: "openmathinstruct2" - prompt_file: examples/prompts/math.txt - split: "train_1M" add_bos: true add_eos: true add_generation_prompt: true - output_key: 'generated_solution' shuffle: true + # dataset + train: + dataset_name: OpenMathInstruct-2 + output_key: generated_solution + split: train_1M + split_validation_size: 0.05 # use 5% of the training data as validation data + seed: ${sft.seed} # seed for train/validation split when split_validation_size > 0 + validation: null + # default settings for all datasets + default: + prompt_file: examples/prompts/math.txt + logger: log_dir: "logs" # Base directory for all logs wandb_enabled: true # Make sure you do a ``wandb login [Your API key]'' before running diff --git a/examples/configs/sft_openmathinstruct2_megatron.yaml b/examples/configs/sft_openmathinstruct2_megatron.yaml index 0925a5c29a..18aba3597b 100644 --- a/examples/configs/sft_openmathinstruct2_megatron.yaml +++ b/examples/configs/sft_openmathinstruct2_megatron.yaml @@ -128,14 +128,6 @@ policy: optimizer: null data: - max_input_seq_length: ${policy.max_total_sequence_length} - dataset_name: "openmathinstruct2" - prompt_file: examples/prompts/math.txt - split: "train_1M" - add_bos: true - add_eos: true - add_generation_prompt: true - output_key: 'generated_solution' num_workers: 1 logger: diff --git a/examples/configs/sft_vlm_3B.yaml b/examples/configs/sft_vlm_3B.yaml index 5615e2f99d..b67a0d2087 100644 --- a/examples/configs/sft_vlm_3B.yaml +++ b/examples/configs/sft_vlm_3B.yaml @@ -23,12 +23,20 @@ checkpointing: data: max_input_seq_length: ${policy.max_total_sequence_length} - dataset_name: "clevr_cogent" add_bos: true add_eos: true add_generation_prompt: false - split: trainA - prompt_file: null + + # dataset + train: + dataset_name: clevr-cogent + split: train + validation: + dataset_name: clevr-cogent + split: valA + # default settings for all datasets + default: + prompt_file: null logger: log_dir: "logs" # Base directory for all logs @@ -37,9 +45,9 @@ logger: monitor_gpus: true # If true, will monitor GPU usage and log to wandb and/or tensorboard wandb: project: "sft-dev" - name: "sft-dev-${data.dataset_name}" + name: "sft-dev-${data.train.dataset_name}" tensorboard: - log_dir: "tb_logs-sft-dev-${data.dataset_name}" + log_dir: "tb_logs-sft-dev-${data.train.dataset_name}" gpu_monitoring: collection_interval: 10 # How often to collect GPU usage metrics (in seconds) flush_interval: 10 # How often to flush GPU usage metrics to the loggers (in seconds) diff --git a/examples/configs/vlm_grpo_3B.yaml b/examples/configs/vlm_grpo_3B.yaml index ec2f8531c0..9eb3ea9d59 100644 --- a/examples/configs/vlm_grpo_3B.yaml +++ b/examples/configs/vlm_grpo_3B.yaml @@ -231,14 +231,23 @@ policy: data: max_input_seq_length: ${policy.max_total_sequence_length} # upper bound, real truncation occurs at vllm.max_model_len - prompt_file: "examples/prompts/clevr_cogent_cot.txt" - system_prompt_file: null - dataset_name: "clevr-cogent" - env_name: "clevr-cogent" - split: "trainA" shuffle: true num_workers: 1 + # dataset + train: + dataset_name: clevr-cogent + split: train + validation: + dataset_name: clevr-cogent + split: valA + # default settings for all datasets + default: + prompt_file: examples/prompts/clevr_cogent_cot.txt + system_prompt_file: null + processor: "vlm_hf_data_processor" + env_name: "clevr-cogent" + env: clevr-cogent: num_workers: 8 diff --git a/examples/configs/vlm_grpo_3B_megatron.yaml b/examples/configs/vlm_grpo_3B_megatron.yaml index 7ae6f38c67..8bb4fb30e1 100644 --- a/examples/configs/vlm_grpo_3B_megatron.yaml +++ b/examples/configs/vlm_grpo_3B_megatron.yaml @@ -183,13 +183,21 @@ policy: data_parallel_sharding_strategy: optim_grads_params data: max_input_seq_length: ${policy.max_total_sequence_length} - prompt_file: examples/prompts/clevr_cogent_cot.txt - system_prompt_file: null - dataset_name: clevr-cogent - env_name: "clevr-cogent" - split: trainA shuffle: true num_workers: 1 + # dataset + train: + dataset_name: clevr-cogent + split: train + validation: + dataset_name: clevr-cogent + split: valA + # default settings for all datasets + default: + prompt_file: examples/prompts/clevr_cogent_cot.txt + system_prompt_file: null + processor: "vlm_hf_data_processor" + env_name: "clevr-cogent" env: clevr-cogent: num_workers: 8 diff --git a/examples/run_distillation_math.py b/examples/run_distillation_math.py index 51fc4b4283..579fd917fe 100644 --- a/examples/run_distillation_math.py +++ b/examples/run_distillation_math.py @@ -14,27 +14,24 @@ import argparse import os -from collections import defaultdict from typing import Any, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import PreTrainedTokenizerBase from nemo_rl.algorithms.distillation import MasterConfig, distillation_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.interfaces import ( - TaskDataProcessFnCallable, - TaskDataSpec, -) -from nemo_rl.data.processors import math_hf_data_processor -from nemo_rl.distributed.ray_actor_environment_registry import ( - get_actor_python_env, +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + extract_necessary_env_names, + load_response_dataset, + update_single_dataset_config, ) from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface -from nemo_rl.environments.math_environment import MathEnvironment +from nemo_rl.environments.utils import create_env from nemo_rl.models.generation import configure_generation_config from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -67,64 +64,81 @@ def setup_data( tokenizer: TokenizerType, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: - print("\n▶ Setting up data...") - math_task_spec = TaskDataSpec( - task_name="math", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." ) - # load dataset - data: Any = load_response_dataset(data_config, seed) - task_name = ( - data.task_name if hasattr(data, "task_name") else data.task_spec.task_name - ) - # data processor - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (math_task_spec, math_hf_data_processor)) - ) - task_data_processors[task_name] = (math_task_spec, math_hf_data_processor) - - # setup math environment - math_env = MathEnvironment.options( # type: ignore # it's wrapped with ray.remote - runtime_env={ - "py_executable": get_actor_python_env( - "nemo_rl.environments.math_environment.MathEnvironment" - ), - "env_vars": dict(os.environ), # Pass thru all user environment variables - } - ).remote(env_configs["math"]) + print("\n▶ Setting up envs...") + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list + } + + print("\n▶ Setting up data...") + # setup train dataset + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) + data = load_response_dataset(data_config["train"]) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, - math_task_spec, + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") + + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if "validation" in data_config and data_config["validation"] is not None: + if "default" in data_config: + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) + val_data = load_response_dataset(data_config["validation"]) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + merged_val_data, tokenizer, - math_task_spec, - task_data_processors, + None, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: math_env) - task_to_env[task_name] = math_env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: @@ -163,7 +177,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(tokenizer, config["data"], config["env"], 42) + ) = setup_data(tokenizer, config["data"], config["env"]) ( student_policy, diff --git a/examples/run_grpo.py b/examples/run_grpo.py index cd9d47f628..6683fed8b2 100644 --- a/examples/run_grpo.py +++ b/examples/run_grpo.py @@ -15,21 +15,21 @@ import argparse import os import pprint -from collections import defaultdict from typing import Any, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import PreTrainedTokenizerBase from nemo_rl.algorithms.grpo import MasterConfig, grpo_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.interfaces import ( - TaskDataProcessFnCallable, - TaskDataSpec, +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + extract_necessary_env_names, + load_response_dataset, + update_single_dataset_config, ) -from nemo_rl.data.processors import math_hf_data_processor from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface from nemo_rl.environments.utils import create_env @@ -63,58 +63,81 @@ def setup_data( tokenizer: TokenizerType, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." + ) + print("\n▶ Setting up envs...") - env_name = data_config["env_name"] - env = create_env(env_name=env_name, env_configs=env_configs) + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list + } print("\n▶ Setting up data...") - default_task_spec = TaskDataSpec( - task_name="math_default", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - # define default task data processor - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (default_task_spec, math_hf_data_processor)) - ) - - # load dataset - data: Any = load_response_dataset(data_config, seed) - task_spec = data.task_spec - task_name = data.task_name - assert hasattr(data, "processor"), "Dataset must have a processor attribute" - task_data_processors[task_name] = (task_spec, data.processor) + # setup train dataset + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) + data = load_response_dataset(data_config["train"]) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, - default_task_spec, # default task data spec to process any values not specified in the task-specific specs + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") + + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if "validation" in data_config and data_config["validation"] is not None: + if "default" in data_config: + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) + val_data = load_response_dataset(data_config["validation"]) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + merged_val_data, tokenizer, - default_task_spec, - task_data_processors, + None, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: env) - task_to_env[task_name] = env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: @@ -166,7 +189,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(tokenizer, config["data"], config["env"], config["grpo"]["seed"]) + ) = setup_data(tokenizer, config["data"], config["env"]) ( policy, diff --git a/examples/run_grpo_math.py b/examples/run_grpo_math.py index bf790080d9..2633800607 100644 --- a/examples/run_grpo_math.py +++ b/examples/run_grpo_math.py @@ -15,27 +15,24 @@ import argparse import os import pprint -from collections import defaultdict from typing import Any, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import PreTrainedTokenizerBase from nemo_rl.algorithms.grpo import MasterConfig, grpo_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.interfaces import ( - TaskDataProcessFnCallable, - TaskDataSpec, -) -from nemo_rl.data.processors import math_hf_data_processor -from nemo_rl.distributed.ray_actor_environment_registry import ( - get_actor_python_env, +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + extract_necessary_env_names, + load_response_dataset, + update_single_dataset_config, ) from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface -from nemo_rl.environments.math_environment import MathEnvironment +from nemo_rl.environments.utils import create_env from nemo_rl.models.generation import configure_generation_config from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -66,65 +63,81 @@ def setup_data( tokenizer: TokenizerType, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: - print("\n▶ Setting up data...") - math_task_spec = TaskDataSpec( - task_name="math", - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." ) - # load dataset - data: Any = load_response_dataset(data_config, seed) - task_name = ( - data.task_name if hasattr(data, "task_name") else data.task_spec.task_name - ) + print("\n▶ Setting up envs...") + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list + } - # data processor - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (math_task_spec, math_hf_data_processor)) - ) - task_data_processors[task_name] = (math_task_spec, math_hf_data_processor) - - # setup math environment - math_env = MathEnvironment.options( # type: ignore # it's wrapped with ray.remote - runtime_env={ - "py_executable": get_actor_python_env( - "nemo_rl.environments.math_environment.MathEnvironment" - ), - "env_vars": dict(os.environ), # Pass thru all user environment variables - } - ).remote(env_configs["math"]) + print("\n▶ Setting up data...") + # setup train dataset + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) + data = load_response_dataset(data_config["train"]) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, - math_task_spec, + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") + + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if "validation" in data_config and data_config["validation"] is not None: + if "default" in data_config: + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) + val_data = load_response_dataset(data_config["validation"]) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + merged_val_data, tokenizer, - math_task_spec, - task_data_processors, + None, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: math_env) - task_to_env[task_name] = math_env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: @@ -176,7 +189,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(tokenizer, config["data"], config["env"], config["grpo"]["seed"]) + ) = setup_data(tokenizer, config["data"], config["env"]) ( policy, diff --git a/examples/run_grpo_rm.py b/examples/run_grpo_rm.py index b36e34bf7e..204ceb3b7f 100644 --- a/examples/run_grpo_rm.py +++ b/examples/run_grpo_rm.py @@ -15,25 +15,24 @@ import argparse import os import pprint -from collections import defaultdict from typing import Any, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import PreTrainedTokenizerBase from nemo_rl.algorithms.grpo import MasterConfig, grpo_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.interfaces import ( - TaskDataProcessFnCallable, - TaskDataSpec, +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + extract_necessary_env_names, + load_response_dataset, + update_single_dataset_config, ) -from nemo_rl.data.processors import math_hf_data_processor -from nemo_rl.distributed.ray_actor_environment_registry import get_actor_python_env from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface -from nemo_rl.environments.reward_model_environment import RewardModelEnvironment +from nemo_rl.environments.utils import create_env from nemo_rl.models.generation import configure_generation_config from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -70,63 +69,81 @@ def setup_data( tokenizer: TokenizerType, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: - print("\n▶ Setting up data...") - # load dataset - data: Any = load_response_dataset(data_config, seed) - task_name = ( - data.task_name if hasattr(data, "task_name") else data.task_spec.task_name + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." ) - reward_model_task_spec = TaskDataSpec( - task_name=task_name, - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], - ) - # data processor - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (reward_model_task_spec, math_hf_data_processor)) - ) - task_data_processors[task_name] = (reward_model_task_spec, math_hf_data_processor) + print("\n▶ Setting up envs...") + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name=env_name, env_config=env_configs[env_name]) + for env_name in env_name_list + } - reward_model_env = RewardModelEnvironment.options( # type: ignore # it's wrapped with ray.remote - runtime_env={ - "py_executable": get_actor_python_env( - "nemo_rl.environments.reward_model_environment.RewardModelEnvironment" - ), - "env_vars": dict(os.environ), # Pass thru all user environment variables - } - ).remote(env_configs["reward_model"]) + print("\n▶ Setting up data...") + # setup train dataset + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) + data = load_response_dataset(data_config["train"]) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, tokenizer, - reward_model_task_spec, + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") + + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if "validation" in data_config and data_config["validation"] is not None: + if "default" in data_config: + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) + val_data = load_response_dataset(data_config["validation"]) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + merged_val_data, tokenizer, - reward_model_task_spec, - task_data_processors, + None, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: reward_model_env) - task_to_env[task_name] = reward_model_env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: @@ -178,7 +195,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(tokenizer, config["data"], config["env"], config["grpo"]["seed"]) + ) = setup_data(tokenizer, config["data"], config["env"]) ( policy, diff --git a/examples/run_sft.py b/examples/run_sft.py index 8f65262c73..d8911ecfce 100644 --- a/examples/run_sft.py +++ b/examples/run_sft.py @@ -16,17 +16,19 @@ import os import pprint from functools import partial -from typing import Any, Callable, Optional +from datasets import concatenate_datasets from omegaconf import OmegaConf from transformers import AutoTokenizer from nemo_rl.algorithms.sft import MasterConfig, setup, sft_train from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.interfaces import DatumSpec, TaskDataSpec -from nemo_rl.data.llm_message_utils import get_formatted_message_log +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + load_response_dataset, + update_single_dataset_config, +) from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -51,104 +53,77 @@ def parse_args(): # ======================================================= # Data Processing # ======================================================= -def sft_preprocessor( - datum_dict: dict[str, Any], - task_data_spec: TaskDataSpec, - tokenizer, - max_seq_length: int, - idx: int, - add_bos: bool = True, - add_eos: bool = True, - add_generation_prompt: bool = False, - datum_preprocessor: Optional[Callable] = None, -) -> DatumSpec: - """Process a datum dictionary for SFT training.""" - # optional preprocessor - if datum_preprocessor is not None: - datum_dict = datum_preprocessor(datum_dict) - - message_log = get_formatted_message_log( - datum_dict["messages"], - tokenizer, - task_data_spec, - add_bos_token=add_bos, - add_eos_token=add_eos, - add_generation_prompt=add_generation_prompt, - tools=datum_dict.get("tools", None), # Pass tools from data if present - ) - - length = sum(len(m["token_ids"]) for m in message_log) - - loss_multiplier = 1.0 - if length > max_seq_length: - # make smaller and mask out - for message in message_log: - message["token_ids"] = message["token_ids"][ - : min(4, max_seq_length // len(message_log)) - ] - loss_multiplier = 0.0 - output = { - "message_log": message_log, - "length": length, - "extra_env_info": None, - "loss_multiplier": loss_multiplier, - "idx": idx, - } - return output +def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig): + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/sft.md#datasets " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." + ) -def setup_data(tokenizer: AutoTokenizer, data_config: DataConfig, seed: int): print("\n▶ Setting up data...") - - # load dataset - data = load_response_dataset(data_config, seed) - train_dataset = data.formatted_ds["train"] - val_dataset = data.formatted_ds["validation"] - sft_task_spec = data.task_spec - print( - f" ✓ Training and validation datasets loaded with {len(train_dataset)} and {len(val_dataset) if val_dataset else 0} samples, respectively." + # setup train dataset + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) + data = load_response_dataset(data_config["train"]) + data_processor = partial( + data.processor, + add_bos=data_config["add_bos"], + add_eos=data_config["add_eos"], + add_generation_prompt=data_config["add_generation_prompt"], ) + task_data_processors = {data.task_name: (data.task_spec, data_processor)} - # add preprocessor if needed - datum_preprocessor = None - if "dataset_name" in data_config and data_config["dataset_name"] == "clevr_cogent": - from nemo_rl.data.datasets.response_datasets.clevr import ( - format_clevr_cogent_dataset, - ) - - datum_preprocessor = partial(format_clevr_cogent_dataset, return_pil=True) - - train_dataset = AllTaskProcessedDataset( - train_dataset, + dataset = AllTaskProcessedDataset( + data.dataset, tokenizer, - sft_task_spec, - partial( - sft_preprocessor, + None, + task_data_processors, + max_seq_length=data_config["max_input_seq_length"], + ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") + + # setup validation dataset + val_task_data_processors = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + + # validation dataset from config + if "validation" in data_config and data_config["validation"] is not None: + if "default" in data_config: + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) + val_data = load_response_dataset(data_config["validation"]) + val_data_list.append(val_data.dataset) + val_data_processor = partial( + val_data.processor, add_bos=data_config["add_bos"], add_eos=data_config["add_eos"], add_generation_prompt=data_config["add_generation_prompt"], - datum_preprocessor=datum_preprocessor, - ), - max_seq_length=data_config["max_input_seq_length"], - ) + ) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data_processor, + ) - if val_dataset is not None: + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - val_dataset, + merged_val_data, tokenizer, - sft_task_spec, - partial( - sft_preprocessor, - add_bos=data_config.get("add_bos", True), - add_eos=data_config.get("add_eos", True), - add_generation_prompt=data_config["add_generation_prompt"], - datum_preprocessor=datum_preprocessor, - ), + None, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") - return train_dataset, val_dataset, sft_task_spec + return dataset, val_dataset def main(is_vlm: bool = False): @@ -186,11 +161,7 @@ def main(is_vlm: bool = False): tokenizer = get_tokenizer(config["policy"]["tokenizer"], get_processor=is_vlm) # setup data - ( - dataset, - val_dataset, - sft_task_spec, - ) = setup_data(tokenizer, config["data"], config["sft"]["seed"]) + dataset, val_dataset = setup_data(tokenizer, config["data"]) ( policy, @@ -212,7 +183,6 @@ def main(is_vlm: bool = False): loss_fn, master_config, logger, - sft_task_spec, checkpointer, sft_save_state, ) diff --git a/examples/run_vlm_grpo.py b/examples/run_vlm_grpo.py index 5e8cb1ef0c..6b0d61cc75 100644 --- a/examples/run_vlm_grpo.py +++ b/examples/run_vlm_grpo.py @@ -13,42 +13,26 @@ # limitations under the License. import argparse -import base64 import os import pprint -from collections import defaultdict -from io import BytesIO from typing import Any, Optional -import requests +from datasets import concatenate_datasets from omegaconf import OmegaConf -from PIL import Image from transformers import AutoProcessor from nemo_rl.algorithms.grpo import MasterConfig, grpo_train, setup from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data import DataConfig -from nemo_rl.data.datasets import AllTaskProcessedDataset, load_response_dataset -from nemo_rl.data.datasets.response_datasets.clevr import format_clevr_cogent_dataset -from nemo_rl.data.datasets.response_datasets.geometry3k import format_geometry3k_dataset -from nemo_rl.data.datasets.response_datasets.refcoco import format_refcoco_dataset -from nemo_rl.data.interfaces import ( - DatumSpec, - LLMMessageLogType, - TaskDataProcessFnCallable, - TaskDataSpec, -) -from nemo_rl.data.multimodal_utils import ( - PackedTensor, - get_dim_to_pack_along, - get_multimodal_keys_from_processor, -) -from nemo_rl.distributed.ray_actor_environment_registry import ( - get_actor_python_env, +from nemo_rl.data.datasets import ( + AllTaskProcessedDataset, + extract_necessary_env_names, + load_response_dataset, + update_single_dataset_config, ) from nemo_rl.distributed.virtual_cluster import init_ray from nemo_rl.environments.interfaces import EnvironmentInterface -from nemo_rl.environments.vlm_environment import VLMEnvironment +from nemo_rl.environments.utils import create_env from nemo_rl.models.generation import configure_generation_config from nemo_rl.utils.config import load_config, parse_hydra_overrides from nemo_rl.utils.logger import get_next_experiment_dir @@ -68,235 +52,87 @@ def parse_args() -> tuple[argparse.Namespace, list[str]]: # =============================================================================== -# VLM Data Processor +# Data Processor # =============================================================================== - - -def resolve_to_image(image_path_or_image: str | Image.Image) -> Image.Image: - """Resolve the image path to a PIL.Image object. - - image_path can be either: - - path to local file - - url to image - - base64 encoded image - """ - if isinstance(image_path_or_image, Image.Image): - return image_path_or_image - - if image_path_or_image.startswith(("http://", "https://")): - # Handle URL - response = requests.get(image_path_or_image) - response.raise_for_status() - return Image.open(BytesIO(response.content)).convert("RGB") - elif image_path_or_image.startswith("data:"): - # Handle base64 encoded image - # Format: ... - header, encoded = image_path_or_image.split(",", 1) - image_data = base64.b64decode(encoded) - return Image.open(BytesIO(image_data)).convert("RGB") - else: - # Handle local file path - return Image.open(image_path_or_image).convert("RGB") - - -def hf_data_processor( - datum_dict: dict[str, Any], - task_data_spec: TaskDataSpec, - processor: AutoProcessor, - max_seq_length: int, - idx: int, -) -> DatumSpec: - """Process a datum dictionary (directly loaded from response_datasets/.py) into a DatumSpec for the VLM Environment.""" - # depending on the task, format the data differently - if task_data_spec.task_name == "clevr-cogent": - datum_dict = format_clevr_cogent_dataset(datum_dict) - elif task_data_spec.task_name == "refcoco": - datum_dict = format_refcoco_dataset(datum_dict) - elif task_data_spec.task_name == "geometry3k": - datum_dict = format_geometry3k_dataset(datum_dict) - else: - raise ValueError(f"No data processor for task {task_data_spec.task_name}") - - user_message = datum_dict["messages"] - problem = user_message[0]["content"] - extra_env_info = {"ground_truth": user_message[1]["content"]} - - message_log: LLMMessageLogType = [] - ### only one round of interaction is assumed, this can easily be extended to a conversational setting - user_message = {"role": "user", "content": []} - # - images = [] - if isinstance(problem, list): - for content in problem: - # for image, video, just append it - # for text, format the prompt to the problem - if content["type"] != "text": - user_message["content"].append(content) - if content["type"] == "image": - images.append(content["image"]) - else: - raise ValueError(f"Unsupported content type: {content['type']}") - elif content["type"] == "text": - user_message["content"].append( - { - "type": "text", - "text": task_data_spec.prompt.format(content["text"]) - if task_data_spec.prompt - else content["text"], - } - ) - else: - # conversation consists of a text-only message - user_message["content"] = task_data_spec.prompt.format(problem) - - images = [resolve_to_image(image) for image in images] - - # get formatted user message - if hasattr(processor, "conversation_preprocessor"): - user_message_for_chat_template = processor.conversation_preprocessor( - user_message - ) - else: - user_message_for_chat_template = user_message - - # this is the string-tokenized conversation template for the generation policy (for vllm) - string_formatted_dialog = processor.apply_chat_template( - [user_message_for_chat_template], - tokenize=False, - add_generation_prompt=True, - ) - - # this is the id-tokenized and image processed conversation template for the policy - message: dict = processor.apply_chat_template( - [user_message], - tokenize=True, - add_generation_prompt=True, - return_tensors="pt", - return_dict=True, - ) - - # add this for backward compatibility - user_message["token_ids"] = message["input_ids"][0] - # add all keys and values to the user message, and the list of keys - multimodal_keys = get_multimodal_keys_from_processor(processor) - for key in multimodal_keys: - if key in message: - user_message[key] = PackedTensor( - message[key], dim_to_pack=get_dim_to_pack_along(processor, key) - ) - - # specifically for gemma, we need to add token_type_ids to the user message as a sequence-type value - if "token_type_ids" in message: - user_message["token_type_ids"] = message["token_type_ids"][0] - - ### append to user message - message_log.append(user_message) - - length = sum(len(m["token_ids"]) for m in message_log) - loss_multiplier = 1.0 - if length >= max_seq_length: - # Treat truncated messages as text only - vllm_kwargs = { - "vllm_content": None, - "vllm_images": [], - } - - # make smaller and mask out - for chat_message in message_log: - chat_message["token_ids"] = chat_message["token_ids"][ - : min(4, max_seq_length // len(message_log)) - ] - for key, value in chat_message.items(): - if isinstance(value, PackedTensor): - chat_message[key] = PackedTensor.empty_like(value) - loss_multiplier = 0.0 - else: - # get the prompt content! (use this for vllm-backend that needs formatted dialog and list of images) for the entire conversation - # add images for vllm serving - vllm_kwargs = { - "vllm_content": string_formatted_dialog, - "vllm_images": images, - } - - output: DatumSpec = { - "message_log": message_log, - "length": length, - "extra_env_info": extra_env_info, - "loss_multiplier": loss_multiplier, - "idx": idx, - "task_name": task_data_spec.task_name, - **vllm_kwargs, - } - return output - - def setup_data( processor: AutoProcessor, data_config: DataConfig, env_configs: dict[str, Any], - seed: int, ) -> tuple[ AllTaskProcessedDataset, Optional[AllTaskProcessedDataset], dict[str, EnvironmentInterface], dict[str, EnvironmentInterface], ]: - """This function will create a TaskSpec, DatumSpec, and connect the two. - - task_spec contains the task name as well as prompt and system prompt modifiers that can be used by data processor - """ - print("\n▶ Setting up data...") - - # load dataset - # TODO @yukih: currently seed is not used for vlm datasets - data: Any = load_response_dataset(data_config, seed) - - task_name = data.task_name - vlm_task_spec = TaskDataSpec( - task_name=task_name, - prompt_file=data_config["prompt_file"], - system_prompt_file=data_config["system_prompt_file"], + assert "train" in data_config, ( + "The dataset config structure is updated. Please refer to https://github.com/NVIDIA-NeMo/RL/blob/main/docs/guides/grpo.md#dataset " + "and the Migrate Guide in https://github.com/NVIDIA-NeMo/RL/pull/1649 to update the dataset config." ) - # add data processor for different tasks - task_data_processors: dict[str, tuple[TaskDataSpec, TaskDataProcessFnCallable]] = ( - defaultdict(lambda: (vlm_task_spec, hf_data_processor)) - ) - task_data_processors[task_name] = (vlm_task_spec, hf_data_processor) - - env_name = data_config["env_name"] - vlm_env = VLMEnvironment.options( # type: ignore # it's wrapped with ray.remote - runtime_env={ - "py_executable": get_actor_python_env( - "nemo_rl.environments.vlm_environment.VLMEnvironment" - ), - "env_vars": dict(os.environ), # Pass thru all user environment variables - } - ).remote(env_configs[env_name]) + print("\n▶ Setting up envs...") + env_name_list = extract_necessary_env_names(data_config) + envs = { + env_name: create_env(env_name="vlm", env_config=env_configs[env_name]) + for env_name in env_name_list + } + + print("\n▶ Setting up data...") + # setup train dataset + if "default" in data_config: + update_single_dataset_config(data_config["train"], data_config["default"]) + data = load_response_dataset(data_config["train"]) + task_data_processors = {data.task_name: (data.task_spec, data.processor)} + task_to_env = {data.task_name: envs[data_config["train"]["env_name"]]} dataset = AllTaskProcessedDataset( - data.formatted_ds["train"], + data.dataset, processor, - vlm_task_spec, + None, task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) + print(f" ✓ Training dataset loaded with {len(dataset)} samples.") + + # setup validation dataset + val_task_data_processors = {} + val_task_to_env = {} + val_data_list = [] + + # validation dataset from train dataset (when train dataset's split_validation_size > 0) + if hasattr(data, "val_dataset") and data.val_dataset is not None: + val_data_list.append(data.val_dataset) + val_task_data_processors = task_data_processors.copy() + val_task_to_env = task_to_env.copy() + + # validation dataset from config + if "validation" in data_config and data_config["validation"] is not None: + if "default" in data_config: + update_single_dataset_config( + data_config["validation"], data_config["default"] + ) + val_data = load_response_dataset(data_config["validation"]) + val_data_list.append(val_data.dataset) + val_task_data_processors[val_data.task_name] = ( + val_data.task_spec, + val_data.processor, + ) + val_task_to_env[val_data.task_name] = envs[ + data_config["validation"]["env_name"] + ] - val_dataset: Optional[AllTaskProcessedDataset] = None - if data.formatted_ds["validation"]: + val_dataset = None + if len(val_data_list) > 0: + merged_val_data = concatenate_datasets(val_data_list) val_dataset = AllTaskProcessedDataset( - data.formatted_ds["validation"], + merged_val_data, processor, - vlm_task_spec, - task_data_processors, + None, + val_task_data_processors, max_seq_length=data_config["max_input_seq_length"], ) - else: - val_dataset = None + print(f" ✓ Validation dataset loaded with {len(val_dataset)} samples.") - task_to_env: dict[str, EnvironmentInterface] = defaultdict(lambda: vlm_env) - task_to_env[task_name] = vlm_env - return dataset, val_dataset, task_to_env, task_to_env + return dataset, val_dataset, task_to_env, val_task_to_env def main() -> None: @@ -356,7 +192,7 @@ def main() -> None: val_dataset, task_to_env, val_task_to_env, - ) = setup_data(processor, config["data"], config["env"], config["grpo"]["seed"]) + ) = setup_data(processor, config["data"], config["env"]) ( policy, diff --git a/nemo_rl/algorithms/sft.py b/nemo_rl/algorithms/sft.py index 09cbdf93c2..b5787fdb28 100644 --- a/nemo_rl/algorithms/sft.py +++ b/nemo_rl/algorithms/sft.py @@ -28,7 +28,6 @@ from nemo_rl.data import DataConfig from nemo_rl.data.collate_fn import rl_collate_fn from nemo_rl.data.datasets import AllTaskProcessedDataset -from nemo_rl.data.interfaces import TaskDataSpec from nemo_rl.data.llm_message_utils import ( add_loss_mask_to_message_log, batched_message_log_to_flat_message, @@ -238,7 +237,6 @@ def validate( loss_fn, step: int, master_config: MasterConfig, - sft_task_spec: TaskDataSpec, val_batches: int, val_batch_size: int, val_mbs: int, @@ -358,7 +356,6 @@ def sft_train( loss_fn, master_config, logger, - sft_task_spec, checkpointer, sft_save_state: SFTSaveState, ) -> None: @@ -400,7 +397,6 @@ def sft_train( loss_fn, step=0, master_config=master_config, - sft_task_spec=sft_task_spec, val_batches=sft_config["val_batches"], val_batch_size=sft_config["val_global_batch_size"], val_mbs=sft_config["val_micro_batch_size"], @@ -474,7 +470,6 @@ def sft_train( loss_fn, step=total_steps + 1, master_config=master_config, - sft_task_spec=sft_task_spec, val_batches=sft_config["val_batches"], val_batch_size=sft_config["val_global_batch_size"], val_mbs=sft_config["val_micro_batch_size"], diff --git a/nemo_rl/data/__init__.py b/nemo_rl/data/__init__.py index 3e40c9d78c..63322b8fea 100644 --- a/nemo_rl/data/__init__.py +++ b/nemo_rl/data/__init__.py @@ -15,32 +15,55 @@ from typing import Literal, NotRequired, TypedDict -# TODO: split this typed dict up so it can be PreferenceDataConfig | ResponseDataConfig | etc +class ResponseDatasetConfig(TypedDict): + dataset_name: NotRequired[str] + data_path: NotRequired[str] + input_key: NotRequired[str] + output_key: NotRequired[str] + split: NotRequired[str] + prompt_file: NotRequired[str | None] + system_prompt_file: NotRequired[str | None] + env_name: NotRequired[str] + processor: NotRequired[str] # remove once processor is refactored + download_dir: NotRequired[str] + # Size of the validation data + split_validation_size: NotRequired[float] + # Seed for train/validation split when split_validation_size > 0 + seed: NotRequired[int] + + +# TODO: split this typed dict up so it can be PreferenceDatasetConfig | ResponseDatasetConfig | etc # so that we can type check the configs more rigorously as opposed to saying everything # is not required. class DataConfig(TypedDict): max_input_seq_length: int - prompt_file: NotRequired[str | None] - system_prompt_file: NotRequired[str | None] - dataset_name: str - val_dataset_name: NotRequired[str] add_bos: NotRequired[bool] add_eos: NotRequired[bool] - input_key: NotRequired[str] - output_key: NotRequired[str | None] add_generation_prompt: NotRequired[bool] add_system_prompt: NotRequired[bool] - split: NotRequired[str | None] shuffle: bool - seed: NotRequired[int | None] - download_dir: NotRequired[str] - train_data_path: NotRequired[str] - val_data_paths: NotRequired[dict[str, str]] # Number of data loader workers. # Set to 8 or 10 for large batches to improve loading speed. # This saturates CPU threads without consuming too much memory # However, setting it too high might cause memory issues for long seqlens. num_workers: NotRequired[int] + # dataset configs + # TODO: remove NotRequired once preference dataset is refactored + train: NotRequired[ResponseDatasetConfig] + validation: NotRequired[ResponseDatasetConfig | None] + default: NotRequired[ResponseDatasetConfig | None] + # TODO: remove once preference dataset is refactored + dataset_name: NotRequired[str] + val_dataset_name: NotRequired[str] + input_key: NotRequired[str] + output_key: NotRequired[str | None] + split: NotRequired[str] + train_data_path: NotRequired[str] + val_data_paths: NotRequired[dict[str, str]] + prompt_file: NotRequired[str | None] + system_prompt_file: NotRequired[str | None] + env_name: NotRequired[str] + processor: NotRequired[str] # remove once processor is refactored # =============================================================================== diff --git a/nemo_rl/data/datasets/__init__.py b/nemo_rl/data/datasets/__init__.py index f859705dba..a4747b7114 100644 --- a/nemo_rl/data/datasets/__init__.py +++ b/nemo_rl/data/datasets/__init__.py @@ -11,11 +11,16 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + from nemo_rl.data.datasets.eval_datasets import load_eval_dataset from nemo_rl.data.datasets.preference_datasets import load_preference_dataset from nemo_rl.data.datasets.processed_dataset import AllTaskProcessedDataset from nemo_rl.data.datasets.response_datasets import load_response_dataset -from nemo_rl.data.datasets.utils import assert_no_double_bos +from nemo_rl.data.datasets.utils import ( + assert_no_double_bos, + extract_necessary_env_names, + update_single_dataset_config, +) __all__ = [ "AllTaskProcessedDataset", @@ -23,4 +28,6 @@ "load_preference_dataset", "load_response_dataset", "assert_no_double_bos", + "extract_necessary_env_names", + "update_single_dataset_config", ] diff --git a/nemo_rl/data/datasets/processed_dataset.py b/nemo_rl/data/datasets/processed_dataset.py index 906ab591fc..ea1cbf87d3 100644 --- a/nemo_rl/data/datasets/processed_dataset.py +++ b/nemo_rl/data/datasets/processed_dataset.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + from typing import Any, Optional, Union import torch @@ -55,17 +56,18 @@ def __init__( ): self.dataset = dataset self.tokenizer = tokenizer + # TODO: will be removed once preference dataset is refactored self.default_task_data_spec = default_task_data_spec self.task_data_processors = task_data_processors self.max_seq_length = max_seq_length self._bos_checked = False - if isinstance(task_data_processors, dict): + if ( + isinstance(task_data_processors, dict) + and default_task_data_spec is not None + ): # apply defaults to all task data specs - for task_name, ( - task_data_spec, - task_data_processor, - ) in task_data_processors.items(): + for _, (task_data_spec, _) in task_data_processors.items(): task_data_spec.copy_defaults(self.default_task_data_spec) def __len__(self) -> int: diff --git a/nemo_rl/data/datasets/raw_dataset.py b/nemo_rl/data/datasets/raw_dataset.py index e63217a469..c795480e49 100644 --- a/nemo_rl/data/datasets/raw_dataset.py +++ b/nemo_rl/data/datasets/raw_dataset.py @@ -12,18 +12,29 @@ # See the License for the specific language governing permissions and # limitations under the License. +from datasets import Dataset + +from nemo_rl.data import ResponseDatasetConfig from nemo_rl.data.interfaces import TaskDataProcessFnCallable, TaskDataSpec from nemo_rl.data.processors import PROCESSOR_REGISTRY class RawDataset: - def __init__(self, data_config: dict, seed: int = 42): - self.data_config: dict = data_config - self.seed: int = seed - self.task_name: str | None = None - self.processor: TaskDataProcessFnCallable | None = None - self.task_spec: TaskDataSpec | None = None - raise NotImplementedError("__init__ is not implemented") + # change to ResponseDatasetConfig | PreferenceDatasetConfig once preference dataset is refactored + data_config: ResponseDatasetConfig + dataset: Dataset + # `val_dataset` is used only when current dataset is used for both training and validation + val_dataset: Dataset | None + processor: TaskDataProcessFnCallable + task_spec: TaskDataSpec + + def split_train_validation(self, test_size: float, seed: int): + if test_size > 0: + split_dataset = self.dataset.train_test_split( + test_size=test_size, seed=seed + ) + self.dataset = split_dataset["train"] + self.val_dataset = split_dataset["test"] def set_processor(self): processor_name = ( @@ -36,7 +47,7 @@ def set_processor(self): ) self.processor = PROCESSOR_REGISTRY[processor_name] - def set_task_spec(self, data_config: dict): + def set_task_spec(self, data_config: ResponseDatasetConfig): self.data_config = data_config system_prompt_file = self.data_config.get("system_prompt_file", None) prompt_file = self.data_config.get("prompt_file", None) diff --git a/nemo_rl/data/datasets/response_datasets/__init__.py b/nemo_rl/data/datasets/response_datasets/__init__.py index a259b8a152..b0730c654a 100644 --- a/nemo_rl/data/datasets/response_datasets/__init__.py +++ b/nemo_rl/data/datasets/response_datasets/__init__.py @@ -11,10 +11,14 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any +from nemo_rl.data import ResponseDatasetConfig +from nemo_rl.data.datasets.response_datasets.aime24 import AIME2024Dataset from nemo_rl.data.datasets.response_datasets.clevr import CLEVRCoGenTDataset -from nemo_rl.data.datasets.response_datasets.dapo_math import DAPOMath17KDataset +from nemo_rl.data.datasets.response_datasets.dapo_math import ( + DAPOMath17KDataset, + DAPOMathAIME2024Dataset, +) from nemo_rl.data.datasets.response_datasets.deepscaler import DeepScalerDataset from nemo_rl.data.datasets.response_datasets.geometry3k import Geometry3KDataset from nemo_rl.data.datasets.response_datasets.helpsteer3 import HelpSteer3Dataset @@ -29,101 +33,36 @@ from nemo_rl.data.datasets.response_datasets.response_dataset import ResponseDataset from nemo_rl.data.datasets.response_datasets.squad import SquadDataset from nemo_rl.data.datasets.response_datasets.tulu3 import Tulu3SftMixtureDataset -from nemo_rl.data.datasets.utils import get_extra_kwargs + +DATASET_REGISTRY = { + # built-in datasets + "AIME2024": AIME2024Dataset, + "clevr-cogent": CLEVRCoGenTDataset, + "DAPOMath17K": DAPOMath17KDataset, + "DAPOMathAIME2024": DAPOMathAIME2024Dataset, + "DeepScaler": DeepScalerDataset, + "geometry3k": Geometry3KDataset, + "HelpSteer3": HelpSteer3Dataset, + "open_assistant": OasstDataset, + "OpenMathInstruct-2": OpenMathInstruct2Dataset, + "refcoco": RefCOCODataset, + "squad": SquadDataset, + "tulu3_sft_mixture": Tulu3SftMixtureDataset, + # load from local JSONL file or HuggingFace + "openai_format": OpenAIFormatDataset, + "ResponseDataset": ResponseDataset, +} -# TODO: refactor this to use the new processor interface and RawDataset interface. https://github.com/NVIDIA-NeMo/RL/issues/1552 -def load_response_dataset(data_config, seed: int = 42): +def load_response_dataset(data_config: ResponseDatasetConfig): """Loads response dataset.""" dataset_name = data_config["dataset_name"] - # TODO @yukih: remove duplicated dataset_name (openmathinstruct2, clevr_cogent) - # for sft training - if dataset_name == "open_assistant": - base_dataset = OasstDataset( - output_dir="/tmp/open_assistant", - seed=seed, - ) - elif dataset_name == "squad": - base_dataset = SquadDataset() - elif dataset_name == "openmathinstruct2": - base_dataset = OpenMathInstruct2Dataset( - split=data_config["split"], - output_key=data_config["output_key"], - prompt_file=data_config["prompt_file"], - seed=seed, - ) - elif dataset_name == "clevr_cogent": - base_dataset = CLEVRCoGenTDataset( - split=data_config["split"], - prompt_file=data_config["prompt_file"], - ) - elif dataset_name == "openai_format": - base_dataset = OpenAIFormatDataset( - data_config["train_data_path"], - data_config["val_data_path"], - data_config["chat_key"], - data_config["system_key"], - data_config["system_prompt"], - data_config["tool_key"], - data_config["use_preserving_dataset"], - ) - # for rl training - elif dataset_name == "OpenMathInstruct-2": - print("Loading nvidia/OpenMathInstruct2Dataset for training and validation") - base_dataset: Any = OpenMathInstruct2Dataset(seed=seed) - elif dataset_name == "DeepScaler": - print( - "Loading agentica-org/DeepScaleR-Preview-Dataset for training and validation" - ) - base_dataset: Any = DeepScalerDataset(seed=seed) - elif dataset_name == "DAPOMath17K": - print( - "Loading BytedTsinghua-SIA/DAPO-Math-17k for training and AIME 2024 for validation" - ) - base_dataset: Any = DAPOMath17KDataset(seed=seed) - # for vlm rl training - elif dataset_name == "clevr-cogent": - base_dataset: Any = CLEVRCoGenTDataset( - split=data_config["split"], - ) - elif dataset_name == "refcoco": - base_dataset: Any = RefCOCODataset( - split=data_config["split"], - download_dir=data_config["download_dir"], - ) - elif dataset_name == "geometry3k": - base_dataset: Any = Geometry3KDataset( - split=data_config["split"], - ) - elif dataset_name == "tulu3_sft_mixture": - base_dataset: Any = Tulu3SftMixtureDataset( - test_size=data_config.get("test_size", 0.05), - prompt_file=data_config.get("prompt_file", None), - max_samples=data_config.get("max_samples", None), - seed=seed, - ) - elif dataset_name == "HelpSteer3": - base_dataset: Any = HelpSteer3Dataset() - # fall back to load from JSON file - elif dataset_name == "ResponseDataset": - if "train_data_path" not in data_config: - raise ValueError( - "train_data_path is required when dataset_name is not one of the built-ins." - ) - extra_kwargs = get_extra_kwargs( - data_config, - [ - "val_data_path", - "input_key", - "output_key", - "train_split", - "val_split", - ], - ) - base_dataset = ResponseDataset( - train_data_path=data_config["train_data_path"], - **extra_kwargs, + # load dataset + if dataset_name in DATASET_REGISTRY: + dataset_class = DATASET_REGISTRY[dataset_name] + dataset = dataset_class( + **data_config # pyrefly: ignore[missing-argument] `data_path` is required for some classes ) else: raise ValueError( @@ -132,33 +71,27 @@ def load_response_dataset(data_config, seed: int = 42): "or set dataset_name=ResponseDataset to load from local JSONL file or HuggingFace." ) - base_dataset.set_task_spec(data_config) - # Skip sft datasets, the run_sft.py has not been refactored yet. - # TODO: refactor run_sft.py to use the new processor interface. https://github.com/NVIDIA-NeMo/RL/issues/1552 - if dataset_name not in [ - "open_assistant", - "squad", - "openmathinstruct2", - "clevr_cogent", - "openai_format", - "tulu3_sft_mixture", - ]: - base_dataset.set_processor() + dataset.set_task_spec(data_config) + # Remove this after the data processor is refactored. https://github.com/NVIDIA-NeMo/RL/issues/1658 + dataset.set_processor() - return base_dataset + return dataset __all__ = [ + "AIME2024Dataset", "CLEVRCoGenTDataset", - "DeepScalerDataset", "DAPOMath17KDataset", + "DAPOMathAIME2024Dataset", + "DeepScalerDataset", "Geometry3KDataset", - "OpenAIFormatDataset", + "HelpSteer3Dataset", "OasstDataset", + "OpenAIFormatDataset", "OpenMathInstruct2Dataset", "RefCOCODataset", "ResponseDataset", "SquadDataset", "Tulu3SftMixtureDataset", - "HelpSteer3Dataset", + "load_response_dataset", ] diff --git a/nemo_rl/data/datasets/response_datasets/aime24.py b/nemo_rl/data/datasets/response_datasets/aime24.py new file mode 100644 index 0000000000..cb9c7b0395 --- /dev/null +++ b/nemo_rl/data/datasets/response_datasets/aime24.py @@ -0,0 +1,51 @@ +# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Any + +from datasets import load_dataset + +from nemo_rl.data.datasets.raw_dataset import RawDataset + + +class AIME2024Dataset(RawDataset): + """Simple wrapper around the AIME2024 dataset with train split. + + Args: + repeat: Number of times to repeat the dataset, default is 16 + """ + + def __init__(self, repeat: int = 16, **kwargs) -> None: + self.task_name = "AIME2024" + + # load from huggingface + self.dataset = load_dataset("HuggingFaceH4/aime_2024", split="train") + + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, + ) + + # repeat the dataset + self.dataset = self.dataset.repeat(repeat) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + {"role": "user", "content": data["problem"]}, + {"role": "assistant", "content": data["answer"]}, + ], + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/clevr.py b/nemo_rl/data/datasets/response_datasets/clevr.py index 30bf67b47f..775b67e8b2 100644 --- a/nemo_rl/data/datasets/response_datasets/clevr.py +++ b/nemo_rl/data/datasets/response_datasets/clevr.py @@ -12,7 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any, Optional +from typing import Any from datasets import load_dataset @@ -52,68 +52,38 @@ def format_clevr_cogent_dataset( ret = { "messages": [ {"role": "user", "content": user_content}, - { - "role": "assistant", - "content": assistant_content, - }, + {"role": "assistant", "content": assistant_content}, ], - "task_name": "clevr-cogent", + "task_name": example["task_name"], } return ret -# contain different variants of the CLEVR dataset -def prepare_clevr_cogent_dataset( - split: str = "trainA", task_name: Optional[str] = None -): - if task_name is None: - task_name = "clevr-cogent" - - if split == "trainA": - tr_dataset = load_dataset("MMInstruction/Clevr_CoGenT_TrainA_70K_Complex")[ - "train" - ] - val_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValA")["train"] - elif split == "trainB": - tr_dataset = load_dataset("MMInstruction/Clevr_CoGenT_TrainA_70K_Complex")[ - "train" - ] - val_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValB")["train"] - elif split == "valA": - tr_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValA")["train"] - val_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValA")["train"] - elif split == "valB": - tr_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValB")["train"] - val_dataset = load_dataset("MMInstruction/Clevr_CoGenT_ValB")["train"] - - # format - disable features to avoid schema conflicts - tr_dataset = tr_dataset.add_column("task_name", [task_name] * len(tr_dataset)) - val_dataset = val_dataset.add_column("task_name", [task_name] * len(val_dataset)) - - return { - "train": tr_dataset, - "validation": val_dataset, - } - - class CLEVRCoGenTDataset(RawDataset): - def __init__( - self, - split: str = "trainA", - prompt_file: Optional[str] = None, - ): - """Simple wrapper around the CLEVR-CoGenT dataset. - - Args: - split: The split of the dataset to use. - prompt_file: The file containing the prompt for the dataset. - """ - if split not in ["trainA", "trainB", "valA", "valB"]: + """Simple wrapper around the CLEVR-CoGenT dataset. + + Args: + split: Split name for the dataset, default is "train" + """ + + def __init__(self, split: str = "train", **kwargs): + # train, valA, and valB are supported splits. + SPLIT_TO_HF_NAME = { + "train": "MMInstruction/Clevr_CoGenT_TrainA_70K_Complex", + "valA": "MMInstruction/Clevr_CoGenT_ValA", + "valB": "MMInstruction/Clevr_CoGenT_ValB", + } + if split not in SPLIT_TO_HF_NAME: raise ValueError( - f"Invalid split: {split}. Please use 'trainA', 'trainB', 'valA', or 'valB'." + f"Invalid split: {split}. Please use 'train', 'valA', or 'valB'." ) + self.task_name = "clevr-cogent" - self.formatted_ds = prepare_clevr_cogent_dataset( - split=split, task_name=self.task_name + # this dataset will process the image during training using `format_clevr_cogent_dataset` + self.dataset = load_dataset(SPLIT_TO_HF_NAME[split])["train"] + + # format - disable features to avoid schema conflicts + self.dataset = self.dataset.add_column( + "task_name", [self.task_name] * len(self.dataset) ) diff --git a/nemo_rl/data/datasets/response_datasets/dapo_math.py b/nemo_rl/data/datasets/response_datasets/dapo_math.py index 3a9988923b..096c6fe835 100644 --- a/nemo_rl/data/datasets/response_datasets/dapo_math.py +++ b/nemo_rl/data/datasets/response_datasets/dapo_math.py @@ -12,72 +12,54 @@ # See the License for the specific language governing permissions and # limitations under the License. - from typing import Any -from datasets import Dataset, load_dataset +from datasets import load_dataset from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_dapo_math_17k( - data: dict[str, str | float | int], - task_name: str = "DAPOMath17K", -) -> dict[str, list[Any] | str]: - return { - "messages": [ - { - "role": "user", - "content": data["prompt"][0]["content"], - }, - { - "role": "assistant", - "content": data["reward_model"]["ground_truth"], - }, - ], - "task_name": task_name, - } - +class DAPOMath17KDataset(RawDataset): + """Simple wrapper around the DAPO Math 17K dataset with train split.""" -def prepare_dapo_math_17k_dataset( - seed: int = 42, task_name: str = "DAPOMath17K" -) -> dict[str, Dataset | None]: - """Load and split the DeepScaler dataset into train and test sets.""" - # Load the original dataset for training - train_ds = load_dataset("BytedTsinghua-SIA/DAPO-Math-17k", split="train") + def __init__(self, **kwargs) -> None: + self.task_name = "DAPOMath17K" - # Load hendrydong/aime24 dataset for validation - val_ds = load_dataset("BytedTsinghua-SIA/AIME-2024", split="train") + # load from huggingface + self.dataset = load_dataset("BytedTsinghua-SIA/DAPO-Math-17k", split="train") - # Shuffle the training dataset with the specified seed - train_ds = train_ds.shuffle(seed=seed) + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, + ) - # Format the examples, removing original columns - train_formatted = train_ds.map( - format_dapo_math_17k, - remove_columns=train_ds.column_names, - fn_kwargs={"task_name": task_name}, - ) - val_formatted = val_ds.map( - format_dapo_math_17k, - remove_columns=val_ds.column_names, - fn_kwargs={"task_name": task_name}, - ) + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + { + "role": "user", + "content": data["prompt"][0]["content"], + }, + { + "role": "assistant", + "content": data["reward_model"]["ground_truth"], + }, + ], + "task_name": self.task_name, + } - return { - "train": train_formatted, - "validation": val_formatted, - } +class DAPOMathAIME2024Dataset(DAPOMath17KDataset): + def __init__(self, **kwargs) -> None: + """Initialize the DAPO Math AIME 2024 dataset with train split.""" + self.task_name = "DAPOMathAIME2024" -class DAPOMath17KDataset(RawDataset): - def __init__(self, seed: int = 42) -> None: - """Initialize the DAPO Math 17K dataset with train split. + # load from huggingface + self.dataset = load_dataset("BytedTsinghua-SIA/AIME-2024", split="train") - Args: - seed: Random seed for reproducible splitting - """ - self.task_name = "DAPOMath17K" - self.formatted_ds = prepare_dapo_math_17k_dataset( - seed=seed, task_name=self.task_name + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, ) diff --git a/nemo_rl/data/datasets/response_datasets/deepscaler.py b/nemo_rl/data/datasets/response_datasets/deepscaler.py index 3465491225..7f6189281d 100644 --- a/nemo_rl/data/datasets/response_datasets/deepscaler.py +++ b/nemo_rl/data/datasets/response_datasets/deepscaler.py @@ -12,77 +12,35 @@ # See the License for the specific language governing permissions and # limitations under the License. - from typing import Any -from datasets import Dataset, load_dataset +from datasets import load_dataset from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_math( - data: dict[str, str | float | int], task_name: str = "DeepScaler" -) -> dict[str, list[Any] | str]: - return { - "messages": [ - { - "role": "user", - "content": data["problem"], - }, - { - "role": "assistant", - "content": data["answer"], - }, - ], - "task_name": task_name, - } - - -def prepare_deepscaler_dataset( - seed: int = 42, task_name: str = "DeepScaler" -) -> dict[str, Dataset | None]: - """Load and split the DeepScaler dataset into train and test sets.""" - # Load the original dataset for training - train_ds = load_dataset("agentica-org/DeepScaleR-Preview-Dataset", split="train") - - # Load hendrydong/aime24 dataset for validation - val_ds = load_dataset("HuggingFaceH4/aime_2024", split="train") - - # Shuffle the training dataset with the specified seed - train_ds = train_ds.shuffle(seed=seed) - - # Format the examples, removing original columns - train_formatted = train_ds.map( - format_math, - remove_columns=train_ds.column_names, - fn_kwargs={"task_name": task_name}, - ) - val_formatted = val_ds.map( - format_math, - remove_columns=val_ds.column_names, - fn_kwargs={"task_name": task_name}, - ) - - # Compute accuracy 16 times per sample (matching the DeepScaleR evaluation setting) - val_repeated = [] - for _ in range(16): - val_repeated.extend(val_formatted) - val_formatted = val_formatted.from_list(val_repeated) - - return { - "train": train_formatted, - "validation": val_formatted, - } - - class DeepScalerDataset(RawDataset): - def __init__(self, seed: int = 42) -> None: - """Initialize the DeepScaler dataset with train/test split. + """Simple wrapper around the DeepScaler dataset with train split.""" - Args: - seed: Random seed for reproducible splitting - """ + def __init__(self, **kwargs) -> None: self.task_name = "DeepScaler" - self.formatted_ds = prepare_deepscaler_dataset( - seed=seed, task_name=self.task_name + + # load from huggingface + self.dataset = load_dataset( + "agentica-org/DeepScaleR-Preview-Dataset", split="train" ) + + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, + ) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + {"role": "user", "content": data["problem"]}, + {"role": "assistant", "content": data["answer"]}, + ], + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/geometry3k.py b/nemo_rl/data/datasets/response_datasets/geometry3k.py index d45fb15127..429decb522 100644 --- a/nemo_rl/data/datasets/response_datasets/geometry3k.py +++ b/nemo_rl/data/datasets/response_datasets/geometry3k.py @@ -11,7 +11,8 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any, Optional + +from typing import Any from datasets import load_dataset @@ -24,11 +25,8 @@ def format_geometry3k_dataset( ) -> dict[str, Any]: """Format the Geometry3K dataset into an OpenAI-API-like message log.""" # isolate single image - example["image"] = ( - example["images"][0] - if isinstance(example["images"], list) - else example["images"] - ) + if isinstance(example["images"], list): + example["image"] = example["images"][0] user_content = [ { @@ -48,50 +46,32 @@ def format_geometry3k_dataset( ret = { "messages": [ {"role": "user", "content": user_content}, - { - "role": "assistant", - "content": assistant_content, - }, + {"role": "assistant", "content": assistant_content}, ], - "task_name": "geometry3k", + "task_name": example["task_name"], } return ret -def prepare_geometry3k_dataset(split: str = "train", task_name: str = "geometry3k"): - if split == "train": - tr_dataset = load_dataset("hiyouga/geometry3k")["train"] - val_dataset = load_dataset("hiyouga/geometry3k")["validation"] - else: - tr_dataset = load_dataset("hiyouga/geometry3k")[split] - val_dataset = load_dataset("hiyouga/geometry3k")[split] - - # format - disable features to avoid schema conflicts - tr_dataset = tr_dataset.add_column("task_name", [task_name] * len(tr_dataset)) - val_dataset = val_dataset.add_column("task_name", [task_name] * len(val_dataset)) - return { - "train": tr_dataset, - "validation": val_dataset, - } - - class Geometry3KDataset(RawDataset): - def __init__( - self, - split: str = "train", - prompt_file: Optional[str] = None, - ): - """Simple wrapper around the Geometry3K dataset. + """Simple wrapper around the Geometry3K dataset. + + Args: + split: Split name for the dataset, default is "train" + """ - Args: - split: The split of the dataset to use. - prompt_file: The file containing the prompt for the dataset. - """ + def __init__(self, split: str = "train", **kwargs): + # train, validation, and test are supported splits. assert split in ["train", "validation", "test"], ( f"Invalid split: {split}. Please use 'train' or 'validation' or 'test'." ) + self.task_name = "geometry3k" - self.formatted_ds = prepare_geometry3k_dataset( - split=split, task_name=self.task_name + # this dataset will process the image during training using `format_geometry3k_dataset` + self.dataset = load_dataset("hiyouga/geometry3k")[split] + + # format - disable features to avoid schema conflicts + self.dataset = self.dataset.add_column( + "task_name", [self.task_name] * len(self.dataset) ) diff --git a/nemo_rl/data/datasets/response_datasets/helpsteer3.py b/nemo_rl/data/datasets/response_datasets/helpsteer3.py index 7d275634ef..af7e00be05 100644 --- a/nemo_rl/data/datasets/response_datasets/helpsteer3.py +++ b/nemo_rl/data/datasets/response_datasets/helpsteer3.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + from typing import Any from absl import logging @@ -19,44 +20,49 @@ from nemo_rl.data.datasets.raw_dataset import RawDataset -# Choose the chosen response as the response and the rejected response as the target -def to_response_data_format( - data: dict[str, Any], task_name: str = "HelpSteer3" -) -> dict: - response_1 = data["response1"] - response_2 = data["response2"] - overall_preference = data["overall_preference"] - - if overall_preference < 0: - chosen = response_1 - elif overall_preference == 0: - logging.log_every_n( - logging.WARNING, - "Preference is 0 for some examples! Setting chosen and rejected to response 1 since we don't know which response is better", - 1000, - ) - chosen = response_1 - else: - chosen = response_2 - - if isinstance(data["context"], str): - context = [{"role": "user", "content": data["context"]}] - else: - context = data["context"] +class HelpSteer3Dataset(RawDataset): + """Simple wrapper around the HelpSteer3 dataset with preference subset. - return { - "context": context, - "response": [{"role": "assistant", "content": chosen}], - "task_name": task_name, - } + Args: + split: Split name for the dataset, default is "train" + """ + def __init__(self, split: str = "train", **kwargs): + self.task_name = "HelpSteer3" -class HelpSteer3Dataset(RawDataset): - """HelpSteer3 preference dataset for DPO training.""" + # load from huggingface + self.dataset = load_dataset("nvidia/HelpSteer3", "preference")[split] - def __init__(self) -> None: - ds = load_dataset("nvidia/HelpSteer3", "preference") - self.task_name = "HelpSteer3" - self.formatted_ds = ds.map( - to_response_data_format, fn_kwargs={"task_name": self.task_name} + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, ) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + response_1 = data["response1"] + response_2 = data["response2"] + overall_preference = data["overall_preference"] + + if overall_preference < 0: + chosen = response_1 + elif overall_preference == 0: + logging.log_every_n( + logging.WARNING, + "Preference is 0 for some examples! Setting chosen and rejected to response 1 since we don't know which response is better", + 1000, + ) + chosen = response_1 + else: + chosen = response_2 + + if isinstance(data["context"], str): + context = [{"role": "user", "content": data["context"]}] + else: + context = data["context"] + + return { + "context": context, + "response": [{"role": "assistant", "content": chosen}], + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py b/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py index 2dfb44aada..674940e88e 100644 --- a/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/oai_format_dataset.py @@ -97,8 +97,7 @@ class OpenAIFormatDataset(RawDataset): } Args: - train_ds_path: Path to the training dataset JSON file - val_ds_path: Path to the validation dataset JSON file + data_path: Path to the dataset JSON file chat_key: Key for the messages list in the dataset (default: "messages") system_key: Optional key for system prompt in the dataset system_prompt: Optional system prompt to add if not in the dataset @@ -121,36 +120,33 @@ class OpenAIFormatDataset(RawDataset): def __init__( self, - train_ds_path: str, - val_ds_path: str, + data_path: str, chat_key: str = "messages", system_key: str | None = None, system_prompt: str | None = None, tool_key: str | None = "tools", use_preserving_dataset: bool = False, + **kwargs, ): self.chat_key = chat_key self.system_key = system_key self.system_prompt = system_prompt self.tool_key = tool_key - self.task_name = "json_dataset" + self.task_name = data_path.split("/")[-1].split(".")[0] + if not use_preserving_dataset: # Use the standard HuggingFace approach (faster and more standard) - train_original_dataset = load_dataset("json", data_files=train_ds_path)[ - "train" - ] - val_original_dataset = load_dataset("json", data_files=val_ds_path)["train"] - - formatted_train_dataset = train_original_dataset.map(self.add_messages_key) - formatted_val_dataset = val_original_dataset.map(self.add_messages_key) + original_dataset = load_dataset("json", data_files=data_path)["train"] + # Format the dataset + self.dataset = original_dataset.map(self.format_data) print( - f"Loaded dataset using standard approach (train: {len(formatted_train_dataset)}, val: {len(formatted_val_dataset)})" + f"Loaded dataset using standard approach: {len(self.dataset)} samples." ) # Warn if tools are present in the dataset if self.tool_key and any( - self.tool_key in sample for sample in formatted_train_dataset + self.tool_key in sample for sample in self.dataset ): warnings.warn( "Tools detected in dataset. Set use_preserving_dataset=True to preserve heterogeneous tool schemas. " @@ -173,46 +169,28 @@ def __init__( ) # Load JSON files directly - with open(train_ds_path, "r") as f: - train_data = [json.loads(line) for line in f] - - with open(val_ds_path, "r") as f: - val_data = [json.loads(line) for line in f] - - # Apply transformations - formatted_train_data = [self.add_messages_key(item) for item in train_data] - formatted_val_data = [self.add_messages_key(item) for item in val_data] - + with open(data_path, "r") as f: + original_dataset = [json.loads(line) for line in f] + # Format the dataset + formatted_data = [self.format_data(item) for item in original_dataset] # Use PreservingDataset to maintain exact structure - formatted_train_dataset = PreservingDataset(formatted_train_data) - formatted_val_dataset = PreservingDataset(formatted_val_data) + self.dataset = PreservingDataset(formatted_data) print( - f"Loaded dataset using PreservingDataset (train: {len(formatted_train_dataset)}, val: {len(formatted_val_dataset)})" + f"Loaded dataset using PreservingDataset: {len(self.dataset)} samples." ) - self.formatted_ds = { - "train": formatted_train_dataset, - "validation": formatted_val_dataset, - } - self.task_name = "json_dataset" - - def add_messages_key( - self, - example: dict[str, Any], - ) -> dict[str, list[dict[str, Any]]]: - messages = [message for message in example[self.chat_key]] - if self.system_key is not None and self.system_key in example: - messages = [ - {"role": "system", "content": example[self.system_key]} - ] + messages + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + messages = [message for message in data[self.chat_key]] + if self.system_key is not None and self.system_key in data: + messages = [{"role": "system", "content": data[self.system_key]}] + messages elif self.system_prompt: messages = [{"role": "system", "content": self.system_prompt}] + messages assert messages[-1]["role"] == "assistant" # Preserve tools if they exist in the data - result = {"messages": messages} - if self.tool_key and self.tool_key in example: - result["tools"] = example[self.tool_key] + result = {"messages": messages, "task_name": self.task_name} + if self.tool_key and self.tool_key in data: + result["tools"] = data[self.tool_key] return result diff --git a/nemo_rl/data/datasets/response_datasets/oasst.py b/nemo_rl/data/datasets/response_datasets/oasst.py index 327bc52b8f..e76316e77e 100644 --- a/nemo_rl/data/datasets/response_datasets/oasst.py +++ b/nemo_rl/data/datasets/response_datasets/oasst.py @@ -15,10 +15,9 @@ import copy import gzip import json -import os -import random -import requests +from datasets import Dataset +from huggingface_hub import hf_hub_download from nemo_rl.data.datasets.raw_dataset import RawDataset @@ -67,7 +66,7 @@ def parse_conversations(tree_obj, first: bool = False): return all_conversations -def get_data_records(objs, task_name: str = "OASST"): +def get_data_records(objs, task_name: str = "oasst"): ## TODO: old format was multi-conversation per example, but ours is single conversation ## is this just because of the input data format? output = [] @@ -87,46 +86,31 @@ def get_data_records(objs, task_name: str = "OASST"): return output -def download_and_process_oasst( - output_directory: str = ".", - seed: int = 42, - task_name: str = "OASST", - split_ratio: float = 0.95, -) -> dict[str, list]: - os.makedirs(output_directory, exist_ok=True) - filename = f"{output_directory}/2023-04-12_oasst_all.trees.jsonl.gz" - - # only download if doesn't exist - if not os.path.isfile(filename): - url = "https://huggingface.co/datasets/OpenAssistant/oasst1/resolve/main/2023-04-12_oasst_all.trees.jsonl.gz" - response = requests.get(url) - with open(filename, mode="wb") as fw: - fw.write(response.content) - - with gzip.open(filename) as f: - file_content = f.readlines() - - all_objs = [json.loads(dp.decode("utf-8")) for dp in file_content] +class OasstDataset(RawDataset): + """Simple wrapper around the OASST dataset. - random.seed(seed) - random.shuffle(all_objs) - train_num = int(len(all_objs) * split_ratio) - train_objs = all_objs[:train_num] - val_objs = all_objs[train_num:] - train_records = get_data_records(train_objs, task_name=task_name) - val_records = get_data_records(val_objs, task_name=task_name) + Args: + split_validation_size: Size of the validation data, default is 0.05 + seed: Seed for train/validation split when split_validation_size > 0, default is 42 + """ - formatted_ds = { - "train": train_records, - "validation": val_records, - } + def __init__(self, split_validation_size: float = 0.05, seed: int = 42, **kwargs): + self.task_name = "oasst" - return formatted_ds + # load from huggingface + filename = hf_hub_download( + repo_id="OpenAssistant/oasst1", + filename="2023-04-12_oasst_all.trees.jsonl.gz", + repo_type="dataset", + ) + with gzip.open(filename) as f: + file_content = f.readlines() + # format the dataset + all_objs = [json.loads(dp.decode("utf-8")) for dp in file_content] + self.dataset = get_data_records(all_objs, task_name=self.task_name) + self.dataset = Dataset.from_list(self.dataset) -class OasstDataset(RawDataset): - def __init__(self, output_dir: str = ".", seed: int = 42) -> None: - self.task_name = "OASST" - self.formatted_ds = download_and_process_oasst( - output_dir, seed, task_name=self.task_name - ) + # `self.val_dataset` is used (not None) only when current dataset is used for both training and validation + self.val_dataset = None + self.split_train_validation(split_validation_size, seed) diff --git a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py index f2bb228427..1b2c651997 100644 --- a/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py +++ b/nemo_rl/data/datasets/response_datasets/openmathinstruct2.py @@ -12,96 +12,59 @@ # See the License for the specific language governing permissions and # limitations under the License. +from typing import Any -from typing import Any, Optional - -from datasets import Dataset, load_dataset +from datasets import load_dataset from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_math( - data: dict[str, str | float | int], - output_key: str = "expected_answer", - task_name: str = "OpenMathInstruct-2", -) -> dict[str, list[Any] | str]: - return { - "messages": [ - { - "role": "user", - "content": data["problem"], - }, - { - "role": "assistant", - "content": data[output_key], - }, - ], - "task_name": task_name, - } - - -def prepare_openinstructmath2_dataset( - split: str = "train_1M", - seed: int = 42, - test_size: float = 0.05, - output_key: str = "expected_answer", - task_name: str = "OpenMathInstruct-2", -) -> dict[str, Dataset | None]: - """Load and split the OpenMathInstruct-2 dataset into train and validation sets using HF's train_test_split.""" - print( - "WARNING: For reproducible experiments, preprocess the dataset once and define your own HfDataset subclass that directly uses the preprocessed datasets." - ) - - # Load the original dataset - original_ds = load_dataset("nvidia/OpenMathInstruct-2", split=split) - - # Split into train and validation sets using HF's train_test_split - split_ds = original_ds.train_test_split(test_size=test_size, seed=seed) - - # Format the examples, removing original columns - train_formatted = split_ds["train"].map( - format_math, - remove_columns=split_ds["train"].column_names, - fn_kwargs={"output_key": output_key, "task_name": task_name}, - ) - val_formatted = split_ds["test"].map( - format_math, - remove_columns=split_ds["test"].column_names, - fn_kwargs={"output_key": output_key, "task_name": task_name}, - ) - - return { - "train": train_formatted, - "validation": val_formatted, - } +class OpenMathInstruct2Dataset(RawDataset): + """Simple wrapper around the OpenMathInstruct2 dataset. + Args: + output_key: Key for the output text, default is "expected_answer" + split: Split name for the dataset, default is "train_1M" + split_validation_size: Size of the validation data, default is 0.05 + seed: Seed for train/validation split when split_validation_size > 0, default is 42 + """ -class OpenMathInstruct2Dataset(RawDataset): def __init__( self, + output_key: str = "expected_answer", split: str = "train_1M", + split_validation_size: float = 0.05, seed: int = 42, - test_size: float = 0.05, - output_key: str = "expected_answer", - prompt_file: Optional[str] = None, + **kwargs, ): - """Initialize the OpenMathInstruct2 dataset with train/validation split. - - Args: - seed: Random seed for reproducible splitting - test_size: Proportion of data to use for validation (0.0-1.0) - """ # train, train_1M, train_2M, and train_5M are supported splits. if split not in ["train", "train_1M", "train_2M", "train_5M"]: raise ValueError( f"Invalid split: {split}. Please use 'train', 'train_1M', 'train_2M', or 'train_5M'." ) + self.input_key = "problem" + self.output_key = output_key self.task_name = "OpenMathInstruct-2" - self.formatted_ds = prepare_openinstructmath2_dataset( - split=split, - seed=seed, - test_size=test_size, - output_key=output_key, - task_name=self.task_name, + + # load from huggingface + self.dataset = load_dataset("nvidia/OpenMathInstruct-2", split=split) + + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, ) + + # `self.val_dataset` is used (not None) only when current dataset is used for both training and validation + self.val_dataset = None + self.split_train_validation(split_validation_size, seed) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + {"role": "user", "content": data[self.input_key]}, + {"role": "assistant", "content": data[self.output_key]}, + ], + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/refcoco.py b/nemo_rl/data/datasets/response_datasets/refcoco.py index 9f32b1a12d..a8630e2c6b 100644 --- a/nemo_rl/data/datasets/response_datasets/refcoco.py +++ b/nemo_rl/data/datasets/response_datasets/refcoco.py @@ -15,8 +15,7 @@ import os import random import zipfile -from pathlib import Path -from typing import Any, Optional, Union +from typing import Any import requests from datasets import load_dataset @@ -98,7 +97,6 @@ def format_refcoco_dataset( width: int = 256, height: int = 256, caption_type: str = "random", - prompt_file: Optional[str] = None, ) -> dict[str, Any]: """Format the RefCOCO dataset from huggingface. @@ -158,101 +156,56 @@ def format_refcoco_dataset( ret = { "messages": [ {"role": "user", "content": user_content}, - { - "role": "assistant", - "content": solution, - }, + {"role": "assistant", "content": solution}, ], - "task_name": "refcoco", + "task_name": example["task_name"], } return ret -# contain different variants of the CLEVR dataset -def prepare_refcoco_dataset( - split: str = "default", - task_name: Optional[str] = None, - path_to_coco_images: Optional[Union[str, Path]] = None, -): - if task_name is None: - task_name = "refcoco" - - tr_dataset = load_dataset("jxu124/refcoco")["train"] - val_dataset = load_dataset("jxu124/refcoco")["validation"] - - # format - disable features to avoid schema conflicts - tr_dataset = tr_dataset.add_column("task_name", [task_name] * len(tr_dataset)) - val_dataset = val_dataset.add_column("task_name", [task_name] * len(val_dataset)) - - if path_to_coco_images is None: - print("No path to coco images provided, downloading images to ./coco_images") - path_to_coco_images = Path("./coco_images") - os.makedirs(path_to_coco_images, exist_ok=True) - else: - path_to_coco_images = Path(path_to_coco_images) - - # check for images - if not os.path.exists(str(path_to_coco_images / "train2014")): - print(f"Downloading train2014 images to {path_to_coco_images}") - download_and_unzip( - "http://images.cocodataset.org/zips/train2014.zip", str(path_to_coco_images) - ) - if not os.path.exists(str(path_to_coco_images / "val2014")): - print(f"Downloading val2014 images to {path_to_coco_images}") - download_and_unzip( - "http://images.cocodataset.org/zips/val2014.zip", str(path_to_coco_images) - ) - - # add image column - tr_dataset = tr_dataset.map( - lambda example: { - **example, - "image_path": str(example["image_path"]).replace( - "coco/", str(path_to_coco_images) + "/" - ) - if "image_path" in example - else example.get("image_path"), - } - ) - val_dataset = val_dataset.map( - lambda example: { - **example, - "image_path": str(example["image_path"]).replace( - "coco/", str(path_to_coco_images) + "/" - ) - if "image_path" in example - else example.get("image_path"), - } - ) - - return { - "train": tr_dataset, - "validation": val_dataset, - } +class RefCOCODataset(RawDataset): + """Simple wrapper around the RefCOCO dataset. + Args: + split: Split name for the dataset, default is "train" + download_dir: Directory to download the dataset to, default is "./coco_images" + """ -class RefCOCODataset(RawDataset): def __init__( self, - split: str = "default", - prompt_file: Optional[str] = None, - download_dir: Optional[str] = None, + split: str = "train", + download_dir: str = "./coco_images", + **kwargs, ): - """Simple wrapper around the RefCOCO dataset. - - Args: - split: The split of the dataset to use (currently only 'default' is supported) - prompt_file: The file containing the prompt for the dataset. - """ - VALID_SPLITS = ["default"] - if split not in VALID_SPLITS: + # train and validation are supported splits. + SPLIT_TO_IMAGE_URL = { + "train": "http://images.cocodataset.org/zips/train2014.zip", + "validation": "http://images.cocodataset.org/zips/val2014.zip", + } + if split not in SPLIT_TO_IMAGE_URL: raise ValueError( - f"Invalid split: {split}. Please use one of {VALID_SPLITS}." + f"Invalid split: {split}. Please use 'train' or 'validation'." ) + + self.download_dir = download_dir self.task_name = "refcoco" - self.formatted_ds = prepare_refcoco_dataset( - split=split, - task_name=self.task_name, - path_to_coco_images=download_dir, - ) + # check for images + filename = SPLIT_TO_IMAGE_URL[split].split("/")[-1].split(".")[0] + if not os.path.exists(f"{download_dir}/{filename}"): + print(f"Downloading {filename} images to {download_dir}") + download_and_unzip(SPLIT_TO_IMAGE_URL[split], download_dir) + + # this dataset will process the image during training using `format_refcoco_dataset` + self.dataset = load_dataset("jxu124/refcoco")[split] + self.dataset = self.dataset.map(self.format_data) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + image_path = None + if "image_path" in data: + image_path = data["image_path"].replace("coco/", self.download_dir + "/") + + return { + "image_path": image_path, + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/response_dataset.py b/nemo_rl/data/datasets/response_datasets/response_dataset.py index 15af21206e..3fa6acfa7a 100644 --- a/nemo_rl/data/datasets/response_datasets/response_dataset.py +++ b/nemo_rl/data/datasets/response_datasets/response_dataset.py @@ -29,56 +29,51 @@ class ResponseDataset(RawDataset): } Args: - train_data_path: Path to the JSON file containing training data - val_data_path: Path to the JSON file containing validation data - input_key: Key for the input text - output_key: Key for the output text - train_split: Split name for the training data, used for HuggingFace datasets, default is None - val_split: Split name for the validation data, used for HuggingFace datasets, default is None + data_path: Path to the dataset JSON file + input_key: Key for the input text, default is "input" + output_key: Key for the output text, default is "output" + split: Optional split name for the dataset, used for HuggingFace datasets + split_validation_size: Size of the validation data, default is 0 + seed: Seed for train/validation split when split_validation_size > 0, default is 42 """ def __init__( self, - train_data_path: str, - val_data_path: Optional[str] = None, + data_path: str, input_key: str = "input", output_key: str = "output", - train_split: Optional[str] = None, - val_split: Optional[str] = None, + split: Optional[str] = None, + split_validation_size: float = 0, + seed: int = 42, + **kwargs, ): self.input_key = input_key self.output_key = output_key - self.task_name = "ResponseDataset" - # load from json file or huggingface - train_ds = load_dataset_from_path(train_data_path, train_split) - if val_data_path: - val_ds = load_dataset_from_path(val_data_path, val_split) - else: - val_ds = None + self.task_name = data_path.split("/")[-1].split(".")[0] + + # load from local or huggingface + self.dataset = load_dataset_from_path(data_path, split) - # Only apply add_messages_key if 'messages' column doesn't exist - if "messages" not in train_ds.column_names: - train_ds = train_ds.map( - self.add_messages_key, fn_kwargs={"task_name": self.task_name} + # format the dataset + if "messages" not in self.dataset.column_names: + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, ) - if val_ds is not None and "messages" not in val_ds.column_names: - val_ds = val_ds.map( - self.add_messages_key, fn_kwargs={"task_name": self.task_name} + else: + self.dataset = self.dataset.add_column( + "task_name", [self.task_name] * len(self.dataset) ) - # store the formatted dataset - self.formatted_ds = { - "train": train_ds, - "validation": val_ds, - } + # `self.val_dataset` is used (not None) only when current dataset is used for both training and validation + self.val_dataset = None + self.split_train_validation(split_validation_size, seed) - def add_messages_key( - self, example: dict[str, Any], task_name: str = "ResponseDataset" - ) -> dict[str, str | list[dict[str, Any]]]: + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: return { "messages": [ - {"role": "user", "content": example[self.input_key]}, - {"role": "assistant", "content": example[self.output_key]}, + {"role": "user", "content": data[self.input_key]}, + {"role": "assistant", "content": data[self.output_key]}, ], - "task_name": task_name, + "task_name": self.task_name, } diff --git a/nemo_rl/data/datasets/response_datasets/squad.py b/nemo_rl/data/datasets/response_datasets/squad.py index c4e1023424..dba0f7c243 100644 --- a/nemo_rl/data/datasets/response_datasets/squad.py +++ b/nemo_rl/data/datasets/response_datasets/squad.py @@ -12,7 +12,6 @@ # See the License for the specific language governing permissions and # limitations under the License. - from typing import Any from datasets import load_dataset @@ -20,27 +19,40 @@ from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_squad(data: dict[str, Any]) -> dict[str, list[dict[str, str]]]: - return { - "messages": [ - { - "role": "system", - "content": data["context"], - }, - { - "role": "user", - "content": data["question"], - }, - { - "role": "assistant", - "content": data["answers"]["text"][0], - }, - ] - } - - class SquadDataset(RawDataset): - def __init__(self) -> None: - original_ds = load_dataset("rajpurkar/squad") - self.task_name = "SQuAD" - self.formatted_ds = original_ds.map(format_squad) + """Simple wrapper around the squad dataset. + + Args: + split: Split name for the dataset, default is "train" + """ + + def __init__(self, split: str = "train", **kwargs) -> None: + self.task_name = "squad" + + # load from huggingface + self.dataset = load_dataset("rajpurkar/squad")[split] + + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=self.dataset.column_names, + ) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + return { + "messages": [ + { + "role": "system", + "content": data["context"], + }, + { + "role": "user", + "content": data["question"], + }, + { + "role": "assistant", + "content": data["answers"]["text"][0], + }, + ], + "task_name": self.task_name, + } diff --git a/nemo_rl/data/datasets/response_datasets/tulu3.py b/nemo_rl/data/datasets/response_datasets/tulu3.py index 9dc29dd83f..1e27d25a2f 100644 --- a/nemo_rl/data/datasets/response_datasets/tulu3.py +++ b/nemo_rl/data/datasets/response_datasets/tulu3.py @@ -19,74 +19,54 @@ from nemo_rl.data.datasets.raw_dataset import RawDataset -def format_tulu3_sft_mixture( - data: dict[str, Any], task_name: str = "tulu3_sft_mixture" -) -> dict[str, str | dict[str, str]]: - """Format for Tulu3 SFT data.""" - messages = data["messages"] - - # Ensure last message is from assistant - if not messages or messages[-1]["role"] != "assistant": - raise ValueError(f"Expected last message to be from assistant, got: {messages}") - - return { - "messages": messages, - "task_name": task_name, - } - - class Tulu3SftMixtureDataset(RawDataset): - """Tulu3 SFT mixture dataset.""" + """Simple wrapper around the Tulu3 SFT mixture dataset with train split. + + Args: + split_validation_size: Size of the validation data, default is 0.05 + seed: Seed for train/validation split when split_validation_size > 0, default is 42 + max_samples: Optional maximum number of samples to use from the dataset + """ def __init__( self, + split_validation_size: float = 0.05, seed: int = 42, - test_size: float = 0.05, - prompt_file: str | None = None, max_samples: int | None = None, + **kwargs, ) -> None: - """Initialize the Tulu3 SFT mixture dataset. - - Args: - seed: Random seed for train/validation split - test_size: Proportion of data to use for validation (0.0-1.0) - prompt_file: Optional prompt file path to be applied via TaskDataSpec - max_samples: Optional maximum number of samples to use from the dataset - """ print( "WARNING: For reproducible experiments, preprocess the dataset once and define your own HfDataset subclass that directly uses the preprocessed datasets." ) self.task_name = "tulu3_sft_mixture" - # Load the original dataset - original_ds = load_dataset( - path="allenai/tulu-3-sft-mixture", - trust_remote_code=True, - )["train"] # This dataset only has a train split + # load from huggingface + self.dataset = load_dataset("allenai/tulu-3-sft-mixture")["train"] # Optionally limit the number of samples if max_samples is not None and max_samples > 0: - original_ds = original_ds.shuffle(seed=seed).select( - range(min(max_samples, len(original_ds))) + self.dataset = self.dataset.shuffle(seed=seed).select( + range(min(max_samples, len(self.dataset))) ) - # Split into train and validation sets - split_ds = original_ds.train_test_split(test_size=test_size, seed=seed) - - # Format the examples without any reasoning processing - train_formatted = split_ds["train"].map( - format_tulu3_sft_mixture, - remove_columns=split_ds["train"].column_names, - fn_kwargs={"task_name": self.task_name}, - ) - val_formatted = split_ds["test"].map( - format_tulu3_sft_mixture, - remove_columns=split_ds["test"].column_names, - fn_kwargs={"task_name": self.task_name}, + # format the dataset + self.dataset = self.dataset.map( + self.format_data, + remove_columns=["id", "source"], ) - self.formatted_ds = { - "train": train_formatted, - "validation": val_formatted, - } + # `self.val_dataset` is used (not None) only when current dataset is used for both training and validation + self.val_dataset = None + self.split_train_validation(split_validation_size, seed) + + def format_data(self, data: dict[str, Any]) -> dict[str, Any]: + messages = data["messages"] + + # Ensure last message is from assistant + if not messages or messages[-1]["role"] != "assistant": + raise ValueError( + f"Expected last message to be from assistant, got: {messages}" + ) + + return {"task_name": self.task_name} diff --git a/nemo_rl/data/datasets/utils.py b/nemo_rl/data/datasets/utils.py index eb78becc45..151c79d47d 100644 --- a/nemo_rl/data/datasets/utils.py +++ b/nemo_rl/data/datasets/utils.py @@ -11,6 +11,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. + import base64 import io import os @@ -106,3 +107,34 @@ def get_extra_kwargs(data_config: dict, keys: list[str]) -> dict: if key in data_config: extra_kwargs[key] = data_config[key] return extra_kwargs + + +def update_single_dataset_config(data_config: dict, default_data_config: dict) -> None: + """Fill the single dataset config with default dataset config.""" + for key in default_data_config.keys(): + if key not in data_config: + data_config[key] = default_data_config[key] + + +def extract_necessary_env_names(data_config: dict) -> list[str]: + """Extract the necessary environment names from the data config. + + Some environments are set in env_configs but not used in the data config. + This function extracts the necessary environment names from the data config. + + Args: + data_config: The data config. + + Returns: + The necessary environment names. + """ + necessary_env_names = set() + keys = ["train", "validation", "default"] + for key in keys: + if ( + key in data_config + and data_config[key] is not None + and "env_name" in data_config[key] + ): + necessary_env_names.add(data_config[key]["env_name"]) + return list(necessary_env_names) diff --git a/nemo_rl/data/interfaces.py b/nemo_rl/data/interfaces.py index 05f10236c5..207b702bda 100644 --- a/nemo_rl/data/interfaces.py +++ b/nemo_rl/data/interfaces.py @@ -18,8 +18,11 @@ import torch from transformers.tokenization_utils_base import PreTrainedTokenizerBase +from nemo_rl.data.multimodal_utils import PackedTensor + # OpenAI-API-like message log, but every messsage may contain associated tensors (i.e. tokenized strings and logprobs) in addition to the original "content" string LLMMessageLogType = list[dict[str, Union[str, torch.Tensor]]] +VLMMessageLogType = list[dict[str, Union[str, torch.Tensor, PackedTensor]]] # Flattened message log where all tensors and data are concatenated together for a conversation # Converts a conversation from list-of-turns format to key-value format with concatenated tensors @@ -30,9 +33,9 @@ class DatumSpec(TypedDict): - message_log: LLMMessageLogType + message_log: LLMMessageLogType | VLMMessageLogType length: int # total (concatenated) length of the message tensors - extra_env_info: dict[str, Any] + extra_env_info: Optional[dict[str, Any]] loss_multiplier: float # multiplier for the loss for this datum. 0 to mask out (say the sample is invalid) idx: int task_name: NotRequired[str] diff --git a/nemo_rl/data/multimodal_utils.py b/nemo_rl/data/multimodal_utils.py index 0da507acc7..918c589ad1 100644 --- a/nemo_rl/data/multimodal_utils.py +++ b/nemo_rl/data/multimodal_utils.py @@ -12,9 +12,13 @@ # See the License for the specific language governing permissions and # limitations under the License. +import base64 +from io import BytesIO from typing import Optional, Union +import requests import torch +from PIL import Image from transformers import PreTrainedTokenizerBase @@ -179,3 +183,30 @@ def get_dim_to_pack_along(processor, key: str) -> int: return 1 # return zero by default return 0 + + +def resolve_to_image(image_path_or_image: str | Image.Image) -> Image.Image: + """Resolve the image path to a PIL.Image object. + + image_path can be either: + - path to local file + - url to image + - base64 encoded image + """ + if isinstance(image_path_or_image, Image.Image): + return image_path_or_image + + if image_path_or_image.startswith(("http://", "https://")): + # Handle URL + response = requests.get(image_path_or_image) + response.raise_for_status() + return Image.open(BytesIO(response.content)).convert("RGB") + elif image_path_or_image.startswith("data:"): + # Handle base64 encoded image + # Format: ... + header, encoded = image_path_or_image.split(",", 1) + image_data = base64.b64decode(encoded) + return Image.open(BytesIO(image_data)).convert("RGB") + else: + # Handle local file path + return Image.open(image_path_or_image).convert("RGB") diff --git a/nemo_rl/data/processors.py b/nemo_rl/data/processors.py index 235e77c225..b9c4a1253a 100644 --- a/nemo_rl/data/processors.py +++ b/nemo_rl/data/processors.py @@ -17,14 +17,16 @@ from typing import Any, Dict, cast import torch -from transformers import PreTrainedTokenizerBase +from transformers import AutoProcessor, PreTrainedTokenizerBase from nemo_rl.data.interfaces import ( DatumSpec, LLMMessageLogType, TaskDataProcessFnCallable, TaskDataSpec, + VLMMessageLogType, ) +from nemo_rl.data.llm_message_utils import get_formatted_message_log TokenizerType = PreTrainedTokenizerBase @@ -132,6 +134,56 @@ def helpsteer3_data_processor( return output +def sft_processor( + datum_dict: dict[str, Any], + task_data_spec: TaskDataSpec, + tokenizer, + max_seq_length: int, + idx: int, + add_bos: bool = True, + add_eos: bool = True, + add_generation_prompt: bool = False, +) -> DatumSpec: + """Process a datum dictionary for SFT training.""" + # optional preprocessor + if datum_dict["task_name"] == "clevr-cogent": + from nemo_rl.data.datasets.response_datasets.clevr import ( + format_clevr_cogent_dataset, + ) + + datum_dict = format_clevr_cogent_dataset(datum_dict) + + message_log = get_formatted_message_log( + datum_dict["messages"], + tokenizer, + task_data_spec, + add_bos_token=add_bos, + add_eos_token=add_eos, + add_generation_prompt=add_generation_prompt, + tools=datum_dict.get("tools", None), # Pass tools from data if present + ) + + length = sum(len(m["token_ids"]) for m in message_log) + + loss_multiplier = 1.0 + if length > max_seq_length: + # make smaller and mask out + for message in message_log: + message["token_ids"] = message["token_ids"][ + : min(4, max_seq_length // len(message_log)) + ] + loss_multiplier = 0.0 + + output: DatumSpec = { + "message_log": message_log, + "length": length, + "extra_env_info": None, + "loss_multiplier": loss_multiplier, + "idx": idx, + } + return output + + # Example of a generic math data processor def math_data_processor( datum_dict: dict[str, Any], @@ -260,6 +312,151 @@ def math_hf_data_processor( return output +def vlm_hf_data_processor( + datum_dict: dict[str, Any], + task_data_spec: TaskDataSpec, + processor: AutoProcessor, + max_seq_length: int, + idx: int, +) -> DatumSpec: + """Process a datum dictionary (directly loaded from response_datasets/.py) into a DatumSpec for the VLM Environment.""" + from nemo_rl.data.datasets.response_datasets.clevr import ( + format_clevr_cogent_dataset, + ) + from nemo_rl.data.datasets.response_datasets.geometry3k import ( + format_geometry3k_dataset, + ) + from nemo_rl.data.datasets.response_datasets.refcoco import format_refcoco_dataset + from nemo_rl.data.multimodal_utils import ( + PackedTensor, + get_dim_to_pack_along, + get_multimodal_keys_from_processor, + resolve_to_image, + ) + + # depending on the task, format the data differently + if datum_dict["task_name"] == "clevr-cogent": + datum_dict = format_clevr_cogent_dataset(datum_dict) + elif datum_dict["task_name"] == "refcoco": + datum_dict = format_refcoco_dataset(datum_dict) + elif datum_dict["task_name"] == "geometry3k": + datum_dict = format_geometry3k_dataset(datum_dict) + else: + raise ValueError(f"No data processor for task {datum_dict['task_name']}") + + user_message = datum_dict["messages"] + problem = user_message[0]["content"] + extra_env_info = {"ground_truth": user_message[1]["content"]} + + message_log: VLMMessageLogType = [] + ### only one round of interaction is assumed, this can easily be extended to a conversational setting + user_message: dict[str, Any] = {"role": "user", "content": []} + # + images = [] + if isinstance(problem, list): + for content in problem: + # for image, video, just append it + # for text, format the prompt to the problem + if content["type"] != "text": + user_message["content"].append(content) + if content["type"] == "image": + images.append(content["image"]) + else: + raise ValueError(f"Unsupported content type: {content['type']}") + elif content["type"] == "text": + user_message["content"].append( + { + "type": "text", + "text": task_data_spec.prompt.format(content["text"]) + if task_data_spec.prompt + else content["text"], + } + ) + else: + # conversation consists of a text-only message + user_message["content"] = task_data_spec.prompt.format(problem) + + images = [resolve_to_image(image) for image in images] + + # get formatted user message + if hasattr(processor, "conversation_preprocessor"): + user_message_for_chat_template = processor.conversation_preprocessor( + user_message + ) + else: + user_message_for_chat_template = user_message + + # this is the string-tokenized conversation template for the generation policy (for vllm) + string_formatted_dialog = processor.apply_chat_template( + [user_message_for_chat_template], + tokenize=False, + add_generation_prompt=True, + ) + + # this is the id-tokenized and image processed conversation template for the policy + message: dict = processor.apply_chat_template( + [user_message], + tokenize=True, + add_generation_prompt=True, + return_tensors="pt", + return_dict=True, + ) + + # add this for backward compatibility + user_message["token_ids"] = message["input_ids"][0] + # add all keys and values to the user message, and the list of keys + multimodal_keys = get_multimodal_keys_from_processor(processor) + for key in multimodal_keys: + if key in message: + user_message[key] = PackedTensor( + message[key], dim_to_pack=get_dim_to_pack_along(processor, key) + ) + + # specifically for gemma, we need to add token_type_ids to the user message as a sequence-type value + if "token_type_ids" in message: + user_message["token_type_ids"] = message["token_type_ids"][0] + + ### append to user message + message_log.append(user_message) + + length = sum(len(m["token_ids"]) for m in message_log) + loss_multiplier = 1.0 + if length >= max_seq_length: + # Treat truncated messages as text only + vllm_kwargs = { + "vllm_content": None, + "vllm_images": [], + } + + # make smaller and mask out + for chat_message in message_log: + chat_message["token_ids"] = chat_message["token_ids"][ + : min(4, max_seq_length // len(message_log)) + ] + for key, value in chat_message.items(): + if isinstance(value, PackedTensor): + chat_message[key] = PackedTensor.empty_like(value) + loss_multiplier = 0.0 + else: + # get the prompt content! (use this for vllm-backend that needs formatted dialog and list of images) for the entire conversation + # add images for vllm serving + vllm_kwargs = { + "vllm_content": string_formatted_dialog, + "vllm_images": images, + } + + output: DatumSpec = { + "message_log": message_log, + "length": length, + "extra_env_info": extra_env_info, + "loss_multiplier": loss_multiplier, + "idx": idx, + "task_name": datum_dict["task_name"], + **vllm_kwargs, # pyrefly: ignore[bad-unpacking] + } + return output + + def _construct_multichoice_prompt( prompt: str, question: str, options: dict[str, str] ) -> str: @@ -291,7 +488,7 @@ def multichoice_qa_processor( if "subject" in datum_dict: extra_env_info.update({"subject": datum_dict["subject"]}) - message_log = [] + message_log: LLMMessageLogType = [] # system prompt if task_data_spec.system_prompt: @@ -351,10 +548,12 @@ def multichoice_qa_processor( Dict[str, TaskDataProcessFnCallable], { "default": math_hf_data_processor, + "helpsteer3_data_processor": helpsteer3_data_processor, + "math_data_processor": math_data_processor, "math_hf_data_processor": math_hf_data_processor, "multichoice_qa_processor": multichoice_qa_processor, - "math_data_processor": math_data_processor, - "helpsteer3_data_processor": helpsteer3_data_processor, + "sft_processor": sft_processor, + "vlm_hf_data_processor": vlm_hf_data_processor, }, ) diff --git a/nemo_rl/environments/utils.py b/nemo_rl/environments/utils.py index a9e50c67e1..99fe9eda1a 100644 --- a/nemo_rl/environments/utils.py +++ b/nemo_rl/environments/utils.py @@ -43,6 +43,9 @@ class EnvRegistryEntry(TypedDict, total=False): "code_jaccard": { "actor_class_fqn": "nemo_rl.environments.code_jaccard_environment.CodeJaccardEnvironment", }, + "vlm": { + "actor_class_fqn": "nemo_rl.environments.vlm_environment.VLMEnvironment", + }, } @@ -93,7 +96,7 @@ def chunk_list_to_workers(to_chunk: list[Any], num_workers: int) -> list[list[An return chunks -def create_env(env_name: str, env_configs: dict) -> EnvironmentInterface: +def create_env(env_name: str, env_config: dict) -> EnvironmentInterface: assert env_name in ENV_REGISTRY, ( f"Env name {env_name} is not registered in ENV_REGISTRY. Please call register_env() to register the environment." ) @@ -104,7 +107,7 @@ def create_env(env_name: str, env_configs: dict) -> EnvironmentInterface: "py_executable": get_actor_python_env(actor_class_fqn), "env_vars": dict(os.environ), } - ).remote(env_configs[env_name]) + ).remote(env_config) return env diff --git a/pyrefly.toml b/pyrefly.toml index e4e5116937..0a710a1ca5 100644 --- a/pyrefly.toml +++ b/pyrefly.toml @@ -38,8 +38,8 @@ project-includes = [ "examples/custom_parallel/llama_nemotron_super_49b_custom_plan.py", "nemo_rl/algorithms/__init__.py", "nemo_rl/algorithms/interfaces.py", - "nemo_rl/algorithms/utils.py", "nemo_rl/algorithms/reward_functions.py", + "nemo_rl/algorithms/utils.py", "nemo_rl/data/__init__.py", "nemo_rl/data/chat_templates.py", "nemo_rl/data/collate_fn.py", @@ -59,13 +59,15 @@ project-includes = [ "nemo_rl/data/datasets/processed_dataset.py", "nemo_rl/data/datasets/raw_dataset.py", "nemo_rl/data/datasets/response_datasets/__init__.py", + "nemo_rl/data/datasets/response_datasets/aime24.py", "nemo_rl/data/datasets/response_datasets/clevr.py", + "nemo_rl/data/datasets/response_datasets/dapo_math.py", "nemo_rl/data/datasets/response_datasets/deepscaler.py", "nemo_rl/data/datasets/response_datasets/geometry3k.py", + "nemo_rl/data/datasets/response_datasets/helpsteer3.py", "nemo_rl/data/datasets/response_datasets/oai_format_dataset.py", "nemo_rl/data/datasets/response_datasets/oasst.py", "nemo_rl/data/datasets/response_datasets/openmathinstruct2.py", - "nemo_rl/data/datasets/response_datasets/helpsteer3.py", "nemo_rl/data/datasets/response_datasets/refcoco.py", "nemo_rl/data/datasets/response_datasets/response_dataset.py", "nemo_rl/data/datasets/response_datasets/squad.py", @@ -82,8 +84,8 @@ project-includes = [ "nemo_rl/distributed/virtual_cluster.py", "nemo_rl/distributed/worker_group_utils.py", "nemo_rl/environments/__init__.py", - "nemo_rl/environments/games/sliding_puzzle.py", "nemo_rl/environments/code_jaccard_environment.py", + "nemo_rl/environments/games/sliding_puzzle.py", "nemo_rl/environments/interfaces.py", "nemo_rl/environments/math_environment.py", "nemo_rl/environments/metrics.py", diff --git a/tests/functional/distillation.sh b/tests/functional/distillation.sh index 19cb71252c..195e3fc3a5 100644 --- a/tests/functional/distillation.sh +++ b/tests/functional/distillation.sh @@ -37,7 +37,9 @@ uv run coverage run -a --data-file=$PROJECT_ROOT/tests/.coverage --source=$PROJE distillation.max_val_samples=16 \ distillation.val_batch_size=8 \ distillation.val_period=3 \ - data.dataset_name=OpenMathInstruct-2 \ + data.train.dataset_name=OpenMathInstruct-2 \ + ++data.train.split_validation_size=0.05 \ + data.validation=null \ loss_fn.zero_outside_topk=true \ logger.tensorboard_enabled=true \ logger.log_dir=$LOG_DIR \ diff --git a/tests/functional/distillation_megatron.sh b/tests/functional/distillation_megatron.sh index b56ea672fb..d40516d939 100644 --- a/tests/functional/distillation_megatron.sh +++ b/tests/functional/distillation_megatron.sh @@ -40,7 +40,9 @@ uv run coverage run -a --data-file=$PROJECT_ROOT/tests/.coverage --source=$PROJE distillation.max_val_samples=16 \ distillation.val_batch_size=8 \ distillation.val_period=3 \ - data.dataset_name=OpenMathInstruct-2 \ + data.train.dataset_name=OpenMathInstruct-2 \ + ++data.train.split_validation_size=0.05 \ + data.validation=null \ loss_fn.zero_outside_topk=false \ logger.tensorboard_enabled=true \ logger.log_dir=$LOG_DIR \ diff --git a/tests/unit/algorithms/test_sft.py b/tests/unit/algorithms/test_sft.py index 83d0cf20c4..fffd06187d 100644 --- a/tests/unit/algorithms/test_sft.py +++ b/tests/unit/algorithms/test_sft.py @@ -61,7 +61,6 @@ def val_iter(self): loss_fn = NLLLoss() logger = MagicMock() checkpointer = MagicMock() - sft_task_spec = MagicMock() # Create mock master config master_config = { @@ -97,7 +96,6 @@ def val_iter(self): "loss_fn": loss_fn, "logger": logger, "checkpointer": checkpointer, - "sft_task_spec": sft_task_spec, "master_config": master_config, } @@ -118,7 +116,6 @@ def test_exit_on_max_steps(mock_components): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) @@ -144,7 +141,6 @@ def test_exit_on_max_epochs(mock_components): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) @@ -178,7 +174,6 @@ def test_exit_on_timeout(mock_components, capsys): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) @@ -223,7 +218,6 @@ def test_training_with_disabled_validation(mock_components): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) @@ -247,7 +241,6 @@ def test_training_with_negative_val_period(mock_components): mock_components["loss_fn"], mock_components["master_config"], mock_components["logger"], - mock_components["sft_task_spec"], mock_components["checkpointer"], sft_save_state, ) diff --git a/tests/unit/data/datasets/test_oai_format_dataset.py b/tests/unit/data/datasets/test_oai_format_dataset.py index aad989ed15..ef7b000c59 100644 --- a/tests/unit/data/datasets/test_oai_format_dataset.py +++ b/tests/unit/data/datasets/test_oai_format_dataset.py @@ -16,9 +16,10 @@ import tempfile import pytest -from transformers import AutoTokenizer +from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data.chat_templates import COMMON_CHAT_TEMPLATES +from nemo_rl.data.datasets import load_response_dataset from nemo_rl.data.datasets.response_datasets import OpenAIFormatDataset @@ -27,74 +28,73 @@ def sample_data(request): chat_key = request.param[0] system_key = request.param[1] - train_data = { + data = { chat_key: [ {"role": "user", "content": "What is the capital of France?"}, {"role": "assistant", "content": "The capital of France is Paris."}, ], } - val_data = { - chat_key: [ - {"role": "user", "content": "What is the capital of Germany?"}, - {"role": "assistant", "content": "The capital of Germany is Berlin."}, - ], - } if system_key is not None: - train_data[system_key] = "You are a helpful assistant." - if system_key is not None: - val_data[system_key] = "You are a helpful assistant." + data[system_key] = "You are a helpful assistant." # Create temporary files for train and validation data - with tempfile.NamedTemporaryFile( - mode="w", suffix=".json", delete=False - ) as train_file: - json.dump(train_data, train_file) - train_path = train_file.name + with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f: + json.dump(data, f) + data_path = f.name + + return data_path - with tempfile.NamedTemporaryFile( - mode="w", suffix=".json", delete=False - ) as val_file: - json.dump(val_data, val_file) - val_path = val_file.name - return train_path, val_path +@pytest.fixture(scope="function") +def tokenizer(): + """Initialize tokenizer for the test model.""" + tokenizer = get_tokenizer({"name": "Qwen/Qwen3-0.6B"}) + return tokenizer @pytest.mark.parametrize("sample_data", [("messages", None)], indirect=True) def test_dataset_initialization(sample_data): - train_path, val_path = sample_data - dataset = OpenAIFormatDataset(train_path, val_path) + data_path = sample_data + data_config = { + "dataset_name": "openai_format", + "data_path": data_path, + } + dataset = load_response_dataset(data_config) assert dataset.chat_key == "messages" - assert "train" in dataset.formatted_ds - assert "validation" in dataset.formatted_ds + assert len(dataset.dataset) == 1 @pytest.mark.parametrize("sample_data", [("conversations", None)], indirect=True) def test_custom_keys(sample_data): - train_path, val_path = sample_data - dataset = OpenAIFormatDataset( - train_path, - val_path, - chat_key="conversations", - system_prompt="You are a helpful assistant.", - ) + data_path = sample_data + data_config = { + "dataset_name": "openai_format", + "data_path": data_path, + "chat_key": "conversations", + "system_prompt": "You are a helpful assistant.", + } + dataset = load_response_dataset(data_config) assert dataset.chat_key == "conversations" assert dataset.system_prompt == "You are a helpful assistant." -@pytest.mark.hf_gated @pytest.mark.parametrize("sample_data", [("messages", "system_key")], indirect=True) -def test_message_formatting(sample_data): - train_path, val_path = sample_data +def test_message_formatting(sample_data, tokenizer): + # load the dataset + data_path = sample_data dataset = OpenAIFormatDataset( - train_path, val_path, chat_key="messages", system_key="system_key" + data_path, + chat_key="messages", + system_key="system_key", ) - first_example = dataset.formatted_ds["train"][0] + # check the first example + first_example = dataset.dataset[0] + assert "task_name" in first_example assert first_example["messages"][0]["role"] == "system" assert first_example["messages"][0]["content"] == "You are a helpful assistant." assert first_example["messages"][1]["role"] == "user" @@ -102,9 +102,8 @@ def test_message_formatting(sample_data): assert first_example["messages"][2]["role"] == "assistant" assert first_example["messages"][2]["content"] == "The capital of France is Paris." + # check the combined message chat_template = COMMON_CHAT_TEMPLATES.passthrough_prompt_response - tokenizer = AutoTokenizer.from_pretrained("Meta-Llama/Meta-Llama-3-8B-Instruct") - combined_message = tokenizer.apply_chat_template( first_example["messages"], chat_template=chat_template, diff --git a/tests/unit/data/datasets/test_response_dataset.py b/tests/unit/data/datasets/test_response_dataset.py index 22bc7168fe..23c7923066 100644 --- a/tests/unit/data/datasets/test_response_dataset.py +++ b/tests/unit/data/datasets/test_response_dataset.py @@ -16,100 +16,155 @@ import tempfile import pytest -from transformers import AutoTokenizer +from datasets import Dataset -from nemo_rl.data.chat_templates import COMMON_CHAT_TEMPLATES +from nemo_rl.algorithms.utils import get_tokenizer from nemo_rl.data.datasets import load_response_dataset +from nemo_rl.data.datasets.response_datasets.clevr import format_clevr_cogent_dataset +from nemo_rl.data.datasets.response_datasets.geometry3k import format_geometry3k_dataset -@pytest.fixture -def sample_data(request): - input_key = request.param[0] - output_key = request.param[1] - - train_data = [ +def create_sample_data(input_key, output_key, is_save_to_disk=False): + data = [ {input_key: "Hello", output_key: "Hi there!"}, {input_key: "How are you?", output_key: "I'm good, thanks!"}, ] - val_data = [ - {input_key: "What's up?", output_key: "Not much!"}, - {input_key: "Bye", output_key: "Goodbye!"}, - ] - # Create temporary files for train and validation data - with tempfile.NamedTemporaryFile( - mode="w", suffix=".json", delete=False - ) as train_file: - json.dump(train_data, train_file) - train_path = train_file.name + # Create temporary dataset file + if is_save_to_disk: + data_path = tempfile.mktemp() + dataset = Dataset.from_list(data) + dataset.save_to_disk(data_path) + else: + with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as f: + json.dump(data, f) + data_path = f.name - with tempfile.NamedTemporaryFile( - mode="w", suffix=".json", delete=False - ) as val_file: - json.dump(val_data, val_file) - val_path = val_file.name + return data_path - return train_path, val_path +@pytest.fixture(scope="function") +def tokenizer(): + """Initialize tokenizer for the test model.""" + tokenizer = get_tokenizer({"name": "Qwen/Qwen3-0.6B"}) + return tokenizer -@pytest.mark.parametrize("sample_data", [("input", "output")], indirect=True) -def test_dataset_initialization(sample_data): + +@pytest.mark.parametrize( + "input_key,output_key", [("input", "output"), ("question", "answer")] +) +@pytest.mark.parametrize("is_save_to_disk", [True, False]) +def test_response_dataset(input_key, output_key, is_save_to_disk, tokenizer): # load the dataset - train_path, val_path = sample_data + data_path = create_sample_data(input_key, output_key, is_save_to_disk) data_config = { "dataset_name": "ResponseDataset", - "train_data_path": train_path, - "val_data_path": val_path, + "data_path": data_path, + "input_key": input_key, + "output_key": output_key, } dataset = load_response_dataset(data_config) - assert dataset.input_key == "input" - assert dataset.output_key == "output" - assert "train" in dataset.formatted_ds - assert "validation" in dataset.formatted_ds + # check the input and output keys + assert dataset.input_key == input_key + assert dataset.output_key == output_key + + # check the first example + first_example = dataset.dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + # check the combined message + chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" + combined_message = tokenizer.apply_chat_template( + first_example["messages"], + chat_template=chat_template, + tokenize=False, + add_generation_prompt=False, + add_special_tokens=False, + ) + assert combined_message == " Question: Hello Answer: Hi there!" -@pytest.mark.parametrize("sample_data", [("question", "answer")], indirect=True) -def test_custom_keys(sample_data): +def test_helpsteer3_dataset(): # load the dataset - train_path, val_path = sample_data - data_config = { - "dataset_name": "ResponseDataset", - "train_data_path": train_path, - "val_data_path": val_path, - "input_key": "question", - "output_key": "answer", - } + data_config = {"dataset_name": "HelpSteer3"} dataset = load_response_dataset(data_config) - assert dataset.input_key == "question" - assert dataset.output_key == "answer" + # check the first example + first_example = dataset.dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 3 + assert "context" in first_example + assert "response" in first_example + assert "task_name" in first_example + + # check the content + assert len(first_example["context"]) == 7 + assert first_example["response"][0]["role"] == "assistant" + assert first_example["response"][0]["content"][:20] == "Yes, you are correct" -@pytest.mark.hf_gated -@pytest.mark.parametrize("sample_data", [("question", "answer")], indirect=True) -def test_message_formatting(sample_data): +def test_open_assistant_dataset(): # load the dataset - train_path, val_path = sample_data data_config = { - "dataset_name": "ResponseDataset", - "train_data_path": train_path, - "val_data_path": val_path, - "input_key": "question", - "output_key": "answer", + "dataset_name": "open_assistant", + "split_validation_size": 0.05, } dataset = load_response_dataset(data_config) - first_example = dataset.formatted_ds["train"][0] + # check the first example + first_example = dataset.dataset[0] + first_val_example = dataset.val_dataset[0] - assert first_example["messages"][0]["role"] == "user" - assert first_example["messages"][0]["content"] == "Hello" - assert first_example["messages"][1]["role"] == "assistant" - assert first_example["messages"][1]["content"] == "Hi there!" + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example - chat_template = COMMON_CHAT_TEMPLATES.passthrough_prompt_response - tokenizer = AutoTokenizer.from_pretrained("Meta-Llama/Meta-Llama-3-8B-Instruct") + # check the content + assert first_example["messages"][-1]["content"][:20] == "```\n def forward(" + assert len(first_example["messages"]) == 7 + assert first_val_example["messages"][-1]["content"][:20] == "The colors you shoul" + assert len(first_val_example["messages"]) == 5 + +@pytest.mark.parametrize( + "dataset_name", + ["DAPOMath17K", "DAPOMathAIME2024", "DeepScaler", "AIME2024", "squad"], +) +def test_build_in_dataset(dataset_name, tokenizer): + # load the dataset + data_config = {"dataset_name": dataset_name} + dataset = load_response_dataset(data_config) + + # check the first example + first_example = dataset.dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + # check the content + if dataset_name == "DAPOMath17K": + assert first_example["messages"][1]["content"] == "34" + elif dataset_name == "DAPOMathAIME2024": + assert first_example["messages"][1]["content"] == "540" + elif dataset_name == "DeepScaler": + assert first_example["messages"][1]["content"] == "-\\frac{2}{3}" + elif dataset_name == "AIME2024": + assert first_example["messages"][1]["content"] == "204" + assert len(dataset.dataset) == 480 + elif dataset_name == "squad": + assert first_example["messages"][2]["content"] == "Saint Bernadette Soubirous" + + # check the combined message + chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" combined_message = tokenizer.apply_chat_template( first_example["messages"], chat_template=chat_template, @@ -118,122 +173,112 @@ def test_message_formatting(sample_data): add_special_tokens=False, ) - assert combined_message == "".join( - message["content"] for message in first_example["messages"] - ) + if dataset_name == "squad": + assert combined_message == ( + "Context: " + + first_example["messages"][0]["content"] + + " Question: " + + first_example["messages"][1]["content"] + + " Answer: " + + first_example["messages"][2]["content"] + ) + else: + assert combined_message == ( + " Question: " + + first_example["messages"][0]["content"] + + " Answer: " + + first_example["messages"][1]["content"] + ) -@pytest.mark.hf_gated -@pytest.mark.skip(reason="dataset download is flaky") -def test_squad_dataset(): +@pytest.mark.parametrize( + "dataset_name,output_key", + [ + ("OpenMathInstruct-2", "expected_answer"), + ("OpenMathInstruct-2", "generated_solution"), + ("tulu3_sft_mixture", None), + ], +) +def test_build_in_dataset_with_split_validation(dataset_name, output_key, tokenizer): # load the dataset data_config = { - "dataset_name": "squad", - "prompt_file": None, - "system_prompt_file": None, + "dataset_name": dataset_name, + "output_key": output_key, + "split_validation_size": 0.05, } - squad_dataset = load_response_dataset(data_config) - - # load the tokenizer - tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") + dataset = load_response_dataset(data_config) - # check that the dataset is formatted correctly - for example in squad_dataset.formatted_ds["train"].take(5): - assert "messages" in example - assert len(example["messages"]) == 3 + # check the first example + first_example = dataset.dataset[0] + first_val_example = dataset.val_dataset[0] + + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example + + # check the content + if dataset_name == "OpenMathInstruct-2": + if output_key == "expected_answer": + assert first_example["messages"][1]["content"] == "\\frac{8\\sqrt{3}}{3}" + elif output_key == "generated_solution": + assert ( + first_example["messages"][1]["content"][:20] == "Let's denote the poi" + ) + elif dataset_name == "tulu3_sft_mixture": + assert first_example["messages"][1]["content"][:20] == "I'm sorry, but I can" + + # check the combined message + messages = [first_example["messages"], first_val_example["messages"]] + chat_template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" + combined_message = tokenizer.apply_chat_template( + messages, + chat_template=chat_template, + tokenize=False, + add_generation_prompt=False, + add_special_tokens=False, + ) - assert example["messages"][0]["role"] == "system" - assert example["messages"][1]["role"] == "user" - assert example["messages"][2]["role"] == "assistant" + for i in range(2): + assert combined_message[i] == ( + " Question: " + + messages[i][0]["content"] + + " Answer: " + + messages[i][1]["content"] + ) - template = "{% for message in messages %}{%- if message['role'] == 'system' %}{{'Context: ' + message['content'].strip()}}{%- elif message['role'] == 'user' %}{{' Question: ' + message['content'].strip() + ' Answer:'}}{%- elif message['role'] == 'assistant' %}{{' ' + message['content'].strip()}}{%- endif %}{% endfor %}" - ## check that applying chat template works as expected - default_templated = tokenizer.apply_chat_template( - example["messages"], - chat_template=template, - tokenize=False, - add_generation_prompt=False, - add_special_tokens=False, - ) +@pytest.mark.parametrize( + "dataset_name,format_func", + [ + ("clevr-cogent", format_clevr_cogent_dataset), + ("geometry3k", format_geometry3k_dataset), + # ("refcoco", format_refcoco_dataset), # this needs download 13.5G image + ], +) +def test_vlm_dataset(dataset_name, format_func): + # load the dataset + data_config = {"dataset_name": dataset_name} + dataset = load_response_dataset(data_config) - assert default_templated == ( - "Context: " - + example["messages"][0]["content"] - + " Question: " - + example["messages"][1]["content"] - + " Answer: " - + example["messages"][2]["content"] - ) + # check the first example + first_example = dataset.dataset[0] + first_example = format_func(first_example) + # only contains messages and task_name + assert len(first_example.keys()) == 2 + assert "messages" in first_example + assert "task_name" in first_example -def test_load_dataset_saved_with_save_to_disk(): - """Test loading a dataset that was saved using HuggingFace's save_to_disk(). - - This tests the fix for datasets that already have a 'messages' column, - which should be preserved without applying add_messages_key again. - """ - from datasets import Dataset - - # Create a dataset with 'messages' column already present - train_data = [ - { - "messages": [ - {"role": "user", "content": "What is 2+2?"}, - {"role": "assistant", "content": "4"}, - ] - }, - { - "messages": [ - {"role": "user", "content": "What is the capital of France?"}, - {"role": "assistant", "content": "Paris"}, - ] - }, - ] - val_data = [ - { - "messages": [ - {"role": "user", "content": "What is 3+3?"}, - {"role": "assistant", "content": "6"}, - ] - }, - ] + # check the content + assert first_example["messages"][0]["role"] == "user" + assert first_example["messages"][0]["content"][0]["type"] == "image" + assert first_example["messages"][0]["content"][1]["type"] == "text" + assert first_example["messages"][1]["role"] == "assistant" - with tempfile.TemporaryDirectory() as tmpdir: - # Create HF datasets and save using save_to_disk - train_dataset = Dataset.from_list(train_data) - val_dataset = Dataset.from_list(val_data) - - train_path = f"{tmpdir}/train" - val_path = f"{tmpdir}/val" - - train_dataset.save_to_disk(train_path) - val_dataset.save_to_disk(val_path) - - # Load using load_response_dataset - data_config = { - "dataset_name": "ResponseDataset", - "train_data_path": train_path, - "val_data_path": val_path, - } - dataset = load_response_dataset(data_config) - - # Verify the dataset loaded correctly - assert "train" in dataset.formatted_ds - assert "validation" in dataset.formatted_ds - assert len(dataset.formatted_ds["train"]) == 2 - assert len(dataset.formatted_ds["validation"]) == 1 - - # Verify messages are preserved correctly - first_train_example = dataset.formatted_ds["train"][0] - assert "messages" in first_train_example - assert len(first_train_example["messages"]) == 2 - assert first_train_example["messages"][0]["role"] == "user" - assert first_train_example["messages"][0]["content"] == "What is 2+2?" - assert first_train_example["messages"][1]["role"] == "assistant" - assert first_train_example["messages"][1]["content"] == "4" - - # Verify validation data - first_val_example = dataset.formatted_ds["validation"][0] - assert first_val_example["messages"][0]["content"] == "What is 3+3?" - assert first_val_example["messages"][1]["content"] == "6" + if dataset_name == "clevr-cogent": + assert first_example["messages"][1]["content"] == "3" + elif dataset_name == "geometry3k": + assert first_example["messages"][1]["content"] == "3" + elif dataset_name == "refcoco": + assert first_example["messages"][1]["content"] == "[243, 469, 558, 746]" diff --git a/tests/unit/data/test_data_processor.py b/tests/unit/data/test_data_processor.py index 7e2fa903f8..343bbe30bb 100644 --- a/tests/unit/data/test_data_processor.py +++ b/tests/unit/data/test_data_processor.py @@ -146,7 +146,7 @@ def test_math_hf_data_processor(tokenizer_name, dataset_cls): task_data_processors[task_name] = (math_task_spec, math_hf_data_processor) dataset = AllTaskProcessedDataset( - dataset=data.formatted_ds["train"], + dataset=data.dataset, tokenizer=tokenizer, default_task_data_spec=math_task_spec, task_data_processors=task_data_processors, diff --git a/tests/unit/data/test_data_shuffle_reproducity.py b/tests/unit/data/test_data_shuffle_reproducity.py index a918648dc6..4074e0d0fa 100644 --- a/tests/unit/data/test_data_shuffle_reproducity.py +++ b/tests/unit/data/test_data_shuffle_reproducity.py @@ -63,7 +63,7 @@ def create_dataloader( task_data_processors[task_name] = (math_task_spec, math_hf_data_processor) dataset = AllTaskProcessedDataset( - dataset=data.formatted_ds["train"].select(range(1000)), + dataset=data.dataset.select(range(1000)), tokenizer=tokenizer, default_task_data_spec=math_task_spec, task_data_processors=task_data_processors, diff --git a/tests/unit/environments/test_code_jaccard_environment.py b/tests/unit/environments/test_code_jaccard_environment.py index f2af133585..0880fcc6f6 100644 --- a/tests/unit/environments/test_code_jaccard_environment.py +++ b/tests/unit/environments/test_code_jaccard_environment.py @@ -28,7 +28,7 @@ def code_jaccard_env_config(): @pytest.fixture(scope="module") def code_jaccard_env(code_jaccard_env_config): - env = create_env("code_jaccard", {"code_jaccard": code_jaccard_env_config}) + env = create_env("code_jaccard", code_jaccard_env_config) yield env env.shutdown.remote() ray.kill(env)