@@ -5,7 +5,7 @@ export LaurentPolynomial
55
66A [Laurent](https://en.wikipedia.org/wiki/Laurent_polynomial) polynomial is of the form `a_{m}x^m + ... + a_{n}x^n` where `m,n` are integers (not necessarily positive) with ` m <= n`.
77
8- The `coeffs` specify `a_{m}, a_{m-1}, ..., a_{n}`. Rhe range specified is of the form `m:n`, if left empty, `0:length(coeffs)-1` is used (i.e., the coefficients refer to the standard basis).
8+ The `coeffs` specify `a_{m}, a_{m-1}, ..., a_{n}`. The range specified is of the form `m:n`, if left empty, `0:length(coeffs)-1` is used (i.e., the coefficients refer to the standard basis). Alternatively, the coefficients can be specified using an `OffsetVector` from the `OffsetArrays` package .
99
1010Laurent polynomials and standard basis polynomials promote to Laurent polynomials. Laurent polynomials may be converted to a standard basis polynomial when `m >= 0`
1111.
9494
9595@register LaurentPolynomial
9696
97+ # Add interface for OffsetArray
98+ function LaurentPolynomial {T} (coeffs:: OffsetArray{S, 1, Array{S,1}} , var:: SymbolLike = :x ) where {T, S}
99+ m,n = axes (coeffs, 1 )
100+ LaurentPolynomial {T} (T .(coeffs. parent), m: n, Symbol (var))
101+ end
102+ function LaurentPolynomial (coeffs:: OffsetArray{S, 1, Array{S,1}} , var:: SymbolLike = :x ) where {S}
103+ LaurentPolynomial {S} (coeffs, var)
104+ end
105+
106+
107+
97108function LaurentPolynomial {T} (coeffs:: AbstractVector{S} ,
98109 rng:: UnitRange{Int64} = 0 : length (coeffs)- 1 ,
99110 var:: Symbol = :x ) where {T <: Number , S <: Number }
@@ -109,11 +120,11 @@ function LaurentPolynomial(coeffs::AbstractVector{T}, var::SymbolLike=:x) where
109120end
110121
111122# # Alternate interface
112- Polynomial (coeffs:: AbstractVector{T} , rng :: UnitRange , var:: SymbolLike = :x ) where {T <: Number } =
113- LaurentPolynomial {T} (coeffs, rng, Symbol ( var) )
123+ Polynomial (coeffs:: OffsetArray{T,1,Array{T,1}} , var:: SymbolLike = :x ) where {T <: Number } =
124+ LaurentPolynomial {T} (coeffs, var)
114125
115- Polynomial {T} (coeffs:: AbstractVector{S} , rng :: UnitRange , var:: SymbolLike = :x ) where {T <: Number , S <: Number } =
116- LaurentPolynomial {T} (T .( coeffs), rng, Symbol ( var) )
126+ Polynomial {T} (coeffs:: OffsetArray{S,1,Array{S,1}} , var:: SymbolLike = :x ) where {T <: Number , S <: Number } =
127+ LaurentPolynomial {T} (coeffs, var)
117128
118129# #
119130# # conversion
@@ -267,6 +278,122 @@ function showterm(io::IO, ::Type{<:LaurentPolynomial}, pj::T, var, j, first::Boo
267278end
268279
269280
281+ # #
282+ # # ---- Conjugation has different defintions
283+ # #
284+
285+ """
286+ conj(p)
287+
288+ This satisfies `conj(p(x)) = conj(p)(conj(x)) = p̄(conj(x))` or `p̄(x) = (conj ∘ p ∘ conj)(x)`
289+
290+ Examples
291+ ```jldoctest
292+ julia> z = variable(LaurentPolynomial, :z)
293+ LaurentPolynomial(z)
294+
295+ julia> p = LaurentPolynomial([im, 1+im, 2 + im], -1:1, :z)
296+ LaurentPolynomial(im*z⁻¹ + (1 + 1im) + (2 + 1im)*z)
297+
298+ julia> conj(p)(conj(z)) ≈ conj(p(z))
299+ true
300+
301+ julia> conj(p)(z) ≈ (conj ∘ p ∘ conj)(z)
302+ true
303+ ```
304+ """
305+ function LinearAlgebra. conj (p:: P ) where {P <: LaurentPolynomial }
306+ ps = coeffs (p)
307+ m,n = extrema (p)
308+ ⟒ (P)(conj (ps),m: n, p. var)
309+ end
310+
311+
312+ """
313+ paraconj(p)
314+
315+ [cf.](https://ccrma.stanford.edu/~jos/filters/Paraunitary_FiltersC_3.html)
316+
317+ Call `p̂ = paraconj(p)` and `p̄` = conj(p)`, then this satisfies
318+ `conj(p(z)) = p̂(1/conj(z))` or `p̂(z) = p̄(1/z) = (conj ∘ p ∘ conj ∘ inf)(z)`.
319+
320+ Examples:
321+
322+ ```jldoctest
323+ julia> z = variable(LaurentPolynomial, :z)
324+ LaurentPolynomial(z)
325+
326+ julia> h = LaurentPolynomial([1,1], -1:0, :z)
327+ LaurentPolynomial(z⁻¹ + 1)
328+
329+ julia> Polynomials.paraconj(h)(z) ≈ 1 + z ≈ LaurentPolynomial([1,1], 0:1, :z)
330+ true
331+
332+ julia> h = LaurentPolynomial([3,2im,1], -2:0, :z)
333+ LaurentPolynomial(3*z⁻² + 2im*z⁻¹ + 1)
334+
335+ julia> Polynomials.paraconj(h)(z) ≈ 1 - 2im*z + 3z^2 ≈ LaurentPolynomial([1, -2im, 3], 0:2, :z)
336+ true
337+
338+ julia> Polynomials.paraconj(h)(z) ≈ (conj ∘ h ∘ conj ∘ inv)(z)
339+ true
340+ """
341+ function paraconj (p:: LaurentPolynomial )
342+ cs = p. coeffs
343+ ds = adjoint .(cs)
344+ m,n = extrema (p)
345+ LaurentPolynomial (reverse (ds), - n: - m, p. var)
346+ end
347+
348+ """
349+ cconj(p)
350+
351+ Conjugation of a polynomial with respect to the imaginary axis.
352+
353+ The `cconj` of a polynomial, `p̃`, conjugates the coefficients and applies `s -> -s`. That is `cconj(p)(s) = conj(p)(-s)`.
354+
355+ This satisfies for *imaginary* `s`: `conj(p(s)) = p̃(s) = (conj ∘ p)(s) = cconj(p)(s) `
356+
357+ [ref](https://github.com/hurak/PolynomialEquations.jl#symmetrix-conjugate-equation-continuous-time-case)
358+
359+ Examples:
360+ ```jldoctest
361+ julia> s = 2im
362+ 0 + 2im
363+
364+ julia> p = LaurentPolynomial([im,-1, -im, 1], 1:2, :s)
365+ LaurentPolynomial(im*s - s² - im*s³ + s⁴)
366+
367+ julia> Polynomials.cconj(p)(s) ≈ conj(p(s))
368+ true
369+
370+ julia> a = LaurentPolynomial([-0.12, -0.29, 1],:s)
371+ LaurentPolynomial(-0.12 - 0.29*s + 1.0*s²)
372+
373+ julia> b = LaurentPolynomial([1.86, -0.34, -1.14, -0.21, 1.19, -1.12],:s)
374+ LaurentPolynomial(1.86 - 0.34*s - 1.14*s² - 0.21*s³ + 1.19*s⁴ - 1.12*s⁵)
375+
376+ julia> x = LaurentPolynomial([-15.5, 50.0096551724139, 1.19], :s)
377+ LaurentPolynomial(-15.5 + 50.0096551724139*s + 1.19*s²)
378+
379+ julia> Polynomials.cconj(a) * x + a * Polynomials.cconj(x) ≈ b + Polynomials.cconj(b)
380+ true
381+ ```
382+
383+ """
384+ function cconj (p:: LaurentPolynomial )
385+ ps = conj .(coeffs (p))
386+ m,n = extrema (p)
387+ for i in m: n
388+ if isodd (i)
389+ ps[i+ 1 - m] *= - 1
390+ end
391+ end
392+ LaurentPolynomial (ps, m: n, p. var)
393+ end
394+
395+
396+
270397# #
271398# # ----
272399# #
@@ -279,10 +406,13 @@ function (p::LaurentPolynomial{T})(x::S) where {T,S}
279406 if m >= 0
280407 evalpoly (x, NTuple {n+1,T} (p[i] for i in 0 : n))
281408 elseif n <= 0
282- evalpoly (inv (x), NTuple {m+1,T} (p[i] for i in 0 : - 1 : m))
409+ evalpoly (inv (x), NTuple {- m+1,T} (p[i] for i in 0 : - 1 : m))
283410 else
284411 # eval pl(x) = a_mx^m + ...+ a_0 at 1/x; pr(x) = a_0 + a_1x + ... + a_nx^n at x; subtract a_0
285- evalpoly (inv (x), NTuple {-m+1,T} (p[i] for i in 0 : - 1 : m)) + evalpoly (x, NTuple {n+1,T} (p[i] for i in 0 : n)) - p[0 ]
412+ l = evalpoly (inv (x), NTuple {-m+1,T} (p[i] for i in 0 : - 1 : m))
413+ r = evalpoly (x, NTuple {n+1,T} (p[i] for i in 0 : n))
414+ mid = p[0 ]
415+ l + r - mid
286416 end
287417end
288418
@@ -426,3 +556,20 @@ function integrate(p::P, k::S) where {T, P<: LaurentPolynomial{T}, S<:Number}
426556 return ⟒ (P)(as, m: n, p. var)
427557
428558end
559+
560+
561+ function Base. gcd (p:: LaurentPolynomial{T} , q:: LaurentPolynomial{T} , args... ; kwargs... ) where {T}
562+ mp, Mp = extrema (p)
563+ mq, Mq = extrema (q)
564+ if mp < 0 || mq < 0
565+ throw (ArgumentError (" GCD is not defined when there are `x⁻¹` terms" ))
566+ end
567+
568+ degree (p) == 0 && return iszero (p) ? q : one (q)
569+ degree (q) == 0 && return iszero (q) ? p : one (p)
570+ check_same_variable (p,q) || throw (ArgumentError (" p and q have different symbols" ))
571+
572+ pp, qq = convert (Polynomial, p), convert (Polynomial, q)
573+ u = gcd (pp, qq, args... , kwargs... )
574+ return LaurentPolynomial (coeffs (u), p. var)
575+ end
0 commit comments