-
Notifications
You must be signed in to change notification settings - Fork 177
Open
Description
I'm trying to train using deim_rtdetrv2_r18vd_coco_120e.pth model.
Dataset is COCO2017.
I used this command to train
python train.py -c configs/deim_rtdetrv2/deim_r18vd_120e_coco.yml -r checkpoints/deim_rtdetrv2_r18vd_coco_120e.pth -d cuda:0But I met this issue.
Not init distributed mode.
cfg: {'task': 'detection', '_model': None, '_postprocessor': None, '_criterion': None, '_optimizer': None, '_lr_scheduler': None, '_lr_warmup_scheduler': None, '_train_dataloader': None, '_val_dataloader': None, '_ema': None, '_scaler': None, '_train_dataset': None, '_val_dataset': None, '_collate_fn': None, '_evaluator': None, '_writer': None, 'num_workers': 0, 'batch_size': None, '_train_batch_size': None, '_val_batch_size': None, '_train_shuffle': None, '_val_shuffle': None, 'resume': 'models/deim_rtdetrv2_r18vd_coco_120e.pth', 'tuning': None, 'epoches': 120, 'last_epoch': -1, 'lrsheduler': 'flatcosine', 'lr_gamma': 0.5, 'no_aug_epoch': 3, 'warmup_iter': 2000, 'flat_epoch': 64, 'use_amp': False, 'use_ema': True, 'ema_decay': 0.9999, 'ema_warmups': 2000, 'sync_bn': True, 'clip_max_norm': 0.1, 'find_unused_parameters': False, 'seed': None, 'print_freq': 100, 'checkpoint_freq': 4, 'output_dir': './output/deim_rtdetrv2_r18vd_120e_coco', 'summary_dir': None, 'device': '', 'yaml_cfg': {'task': 'detection', 'evaluator': {'type': 'CocoEvaluator', 'iou_types': ['bbox']}, 'num_classes': 80, 'remap_mscoco_category': True, 'train_dataloader': {'type': 'DataLoader', 'dataset': {'type': 'CocoDetection', 'img_folder': 'datasets\\coco8\\images\\train2017', 'ann_file': 'datasets\\coco8\\labels\\instances_train2017.json', 'return_masks': False, 'transforms': {'type': 'Compose', 'ops': [{'type': 'Mosaic', 'output_size': 320, 'rotation_range': 10, 'translation_range': [0.1, 0.1], 'scaling_range': [0.5, 1.5], 'probability': 1.0, 'fill_value': 0, 'use_cache': False, 'max_cached_images': 50, 'random_pop': True}, {'type': 'RandomPhotometricDistort', 'p': 0.5}, {'type': 'RandomZoomOut', 'fill': 0}, {'type': 'RandomIoUCrop', 'p': 0.8}, {'type': 'SanitizeBoundingBoxes', 'min_size': 1}, {'type': 'RandomHorizontalFlip'}, {'type': 'Resize', 'size': [640, 640]}, {'type': 'SanitizeBoundingBoxes', 'min_size': 1}, {'type': 'ConvertPILImage', 'dtype': 'float32', 'scale': True}, {'type': 'ConvertBoxes', 'fmt': 'cxcywh', 'normalize': True}], 'policy': {'name': 'stop_epoch', 'epoch': [4, 64, 117], 'ops': ['Mosaic', 'RandomPhotometricDistort', 'RandomZoomOut', 'RandomIoUCrop']}, 'mosaic_prob': 0.5}}, 'shuffle': True, 'num_workers': 4, 'drop_last': True, 'collate_fn': {'type': 'BatchImageCollateFunction', 'base_size': 640, 'base_size_repeat': 3, 'stop_epoch': 117, 'scales': None, 'mixup_prob': 0.5, 'mixup_epochs': [4, 64]}, 'total_batch_size': 16}, 'val_dataloader': {'type': 'DataLoader', 'dataset': {'type': 'CocoDetection', 'img_folder': 'datasets\\coco8\\images\\val2017', 'ann_file': 'datasets\\coco8\\labels\\instances_val2017.json', 'return_masks': False, 'transforms': {'type': 'Compose', 'ops': [{'type': 'Resize', 'size': [640, 640]}, {'type': 'ConvertPILImage', 'dtype': 'float32', 'scale': True}]}}, 'shuffle': False, 'num_workers': 4, 'drop_last': False, 'collate_fn': {'type': 'BatchImageCollateFunction'}, 'total_batch_size': 64}, 'print_freq': 100, 'output_dir': './output/deim_rtdetrv2_r18vd_120e_coco', 'checkpoint_freq': 4, 'sync_bn': True, 'find_unused_parameters': False, 'use_amp': False, 'scaler': {'type': 'GradScaler', 'enabled': True}, 'use_ema': True, 'ema': {'type': 'ModelEMA', 'decay': 0.9999, 'warmups': 2000, 'start': 0}, 'epoches': 120, 'clip_max_norm': 0.1, 'optimizer': {'type': 'AdamW', 'params': [{'params': '^(?=.*(?:norm|bn)).*$', 'weight_decay': 0.0}], 'lr': 0.0002, 'betas': [0.9, 0.999], 'weight_decay': 0.0001}, 'lr_scheduler': {'type': 'MultiStepLR', 'milestones': [1000], 'gamma': 0.1}, 'lr_warmup_scheduler': {'type': 'LinearWarmup', 'warmup_duration': 2000}, 'model': 'DEIM', 'criterion': 'DEIMCriterion', 'postprocessor': 'PostProcessor', 'use_focal_loss': True, 'eval_spatial_size': [640, 640], 'DEIM': {'backbone': 'PResNet', 'encoder': 'HybridEncoder', 'decoder': 'RTDETRTransformerv2'}, 'lrsheduler': 'flatcosine', 'lr_gamma': 0.5, 'warmup_iter': 2000, 'flat_epoch': 64, 'no_aug_epoch': 3, 'PResNet': {'depth': 18, 'variant': 'd', 'freeze_at': -1, 'return_idx': [1, 2, 3], 'num_stages': 4, 'freeze_norm': False, 'pretrained': True, 'local_model_dir': '../RT-DETR-main/rtdetrv2_pytorch/INK1k/'}, 'HybridEncoder': {'in_channels': [128, 256, 512], 'feat_strides': [8, 16, 32], 'hidden_dim': 256, 'use_encoder_idx': [2], 'num_encoder_layers': 1, 'nhead': 8, 'dim_feedforward': 1024, 'dropout': 0.0, 'enc_act': 'gelu', 'expansion': 0.5, 'depth_mult': 1, 'act': 'silu', 'version': 'rt_detrv2'}, 'RTDETRTransformerv2': {'feat_channels': [256, 256, 256], 'feat_strides': [8, 16, 32], 'hidden_dim': 256, 'num_levels': 3, 'num_layers': 3, 'num_queries': 300, 'num_denoising': 100, 'label_noise_ratio': 0.5, 'box_noise_scale': 1.0, 'eval_idx': -1, 'num_points': [4, 4, 4], 'cross_attn_method': 'default', 'query_select_method': 'default', 'query_pos_method': 'as_reg', 'activation': 'silu', 'mlp_act': 'silu'}, 'PostProcessor': {'num_top_queries': 300}, 'DEIMCriterion': {'weight_dict': {'loss_vfl': 1, 'loss_bbox': 5, 'loss_giou': 2, 'loss_mal': 1}, 'losses': ['mal', 'boxes'], 'alpha': 0.75, 'gamma': 1.5, 'use_uni_set': False, 'matcher': {'type': 'HungarianMatcher', 'weight_dict': {'cost_class': 2, 'cost_bbox': 5, 'cost_giou': 2}, 'alpha': 0.25, 'gamma': 2.0}}, '__include__': ['./rtdetrv2_r18vd_120e_coco.yml', '../base/rt_deim.yml'], 'config': 'configs/deim_rtdetrv2/deim_r18vd_120e_coco.yml', 'resume': 'models/deim_rtdetrv2_r18vd_coco_120e.pth', 'test_only': False, 'print_method': 'builtin', 'print_rank': 0}}
Loaded PResNet18 from local file@../RT-DETR-main/rtdetrv2_pytorch/INK1k/ResNet18_vd_pretrained_from_paddle.pth.
Load PResNet18 state_dict
### Query Position Embedding@as_reg ###
Initial lr: [0.0002, 0.0002]
building train_dataloader with batch_size=16...
### Transform @Mosaic ###
### Transform @RandomPhotometricDistort ###
### Transform @RandomZoomOut ###
### Transform @RandomIoUCrop ###
### Transform @SanitizeBoundingBoxes ###
### Transform @RandomHorizontalFlip ###
### Transform @Resize ###
### Transform @SanitizeBoundingBoxes ###
### Transform @ConvertPILImage ###
### Transform @ConvertBoxes ###
### Mosaic with Prob.@0.5 and ZoomOut/IoUCrop existed ###
### ImgTransforms Epochs: [4, 64, 117] ###
### Policy_ops@['Mosaic', 'RandomPhotometricDistort', 'RandomZoomOut', 'RandomIoUCrop'] ###
Traceback (most recent call last):
File "E:\Data Research\DEIM\train.py", line 84, in <module>
main(args)
File "E:\Data Research\DEIM\train.py", line 54, in main
solver.fit()
File "E:\Data Research\DEIM\engine\solver\det_solver.py", line 25, in fit
self.train()
File "E:\Data Research\DEIM\engine\solver\_solver.py", line 87, in train
self.cfg.train_dataloader, shuffle=self.cfg.train_dataloader.shuffle
^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\engine\core\yaml_config.py", line 76, in train_dataloader
self._train_dataloader = self.build_dataloader('train_dataloader')
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\engine\core\yaml_config.py", line 172, in build_dataloader
loader = create(name, global_cfg, batch_size=bs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\engine\core\workspace.py", line 119, in create
return create(name, global_cfg)
^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\engine\core\workspace.py", line 167, in create
module_kwargs[k] = create(name, global_cfg)
^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\engine\core\workspace.py", line 185, in create
return module(**module_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^
TypeError: BatchImageCollateFunction.__init__() got an unexpected keyword argument 'scales'So that I added this code snippet to workspace.py file at line 179 before return module(**module_kwargs).
if "scales" in module_kwargs:
del module_kwargs["scales"]
return module(**module_kwargs)Then I met this issue.
Not init distributed mode.
cfg: {'task': 'detection', '_model': None, '_postprocessor': None, '_criterion': None, '_optimizer': None, '_lr_scheduler': None, '_lr_warmup_scheduler': None, '_train_dataloader': None, '_val_dataloader': None, '_ema': None, '_scaler': None, '_train_dataset': None, '_val_dataset': None, '_collate_fn': None, '_evaluator': None, '_writer': None, 'num_workers': 0, 'batch_size': None, '_train_batch_size': None, '_val_batch_size': None, '_train_shuffle': None, '_val_shuffle': None, 'resume': 'models/deim_rtdetrv2_r18vd_coco_120e.pth', 'tuning': None, 'epoches': 120, 'last_epoch': -1, 'lrsheduler': 'flatcosine', 'lr_gamma': 0.5, 'no_aug_epoch': 3, 'warmup_iter': 2000, 'flat_epoch': 64, 'use_amp': False, 'use_ema': True, 'ema_decay': 0.9999, 'ema_warmups': 2000, 'sync_bn': True, 'clip_max_norm': 0.1, 'find_unused_parameters': False, 'seed': None, 'print_freq': 100, 'checkpoint_freq': 4, 'output_dir': './output/deim_rtdetrv2_r18vd_120e_coco', 'summary_dir': None, 'device': '', 'yaml_cfg': {'task': 'detection', 'evaluator': {'type': 'CocoEvaluator', 'iou_types': ['bbox']}, 'num_classes': 80, 'remap_mscoco_category': True, 'train_dataloader': {'type': 'DataLoader', 'dataset': {'type': 'CocoDetection', 'img_folder': 'datasets\\coco8\\images\\train2017', 'ann_file': 'datasets\\coco8\\labels\\instances_train2017.json', 'return_masks': False, 'transforms': {'type': 'Compose', 'ops': [{'type': 'Mosaic', 'output_size': 320, 'rotation_range': 10, 'translation_range': [0.1, 0.1], 'scaling_range': [0.5, 1.5], 'probability': 1.0, 'fill_value': 0, 'use_cache': False, 'max_cached_images': 50, 'random_pop': True}, {'type': 'RandomPhotometricDistort', 'p': 0.5}, {'type': 'RandomZoomOut', 'fill': 0}, {'type': 'RandomIoUCrop', 'p': 0.8}, {'type': 'SanitizeBoundingBoxes', 'min_size': 1}, {'type': 'RandomHorizontalFlip'}, {'type': 'Resize', 'size': [640, 640]}, {'type': 'SanitizeBoundingBoxes', 'min_size': 1}, {'type': 'ConvertPILImage', 'dtype': 'float32', 'scale': True}, {'type': 'ConvertBoxes', 'fmt': 'cxcywh', 'normalize': True}], 'policy': {'name': 'stop_epoch', 'epoch': [4, 64, 117], 'ops': ['Mosaic', 'RandomPhotometricDistort', 'RandomZoomOut', 'RandomIoUCrop']}, 'mosaic_prob': 0.5}}, 'shuffle': True, 'num_workers': 4, 'drop_last': True, 'collate_fn': {'type': 'BatchImageCollateFunction', 'base_size': 640, 'base_size_repeat': 3, 'stop_epoch': 117, 'scales': None, 'mixup_prob': 0.5, 'mixup_epochs': [4, 64]}, 'total_batch_size': 16}, 'val_dataloader': {'type': 'DataLoader', 'dataset': {'type': 'CocoDetection', 'img_folder': 'datasets\\coco8\\images\\val2017', 'ann_file': 'datasets\\coco8\\labels\\instances_val2017.json', 'return_masks': False, 'transforms': {'type': 'Compose', 'ops': [{'type': 'Resize', 'size': [640, 640]}, {'type': 'ConvertPILImage', 'dtype': 'float32', 'scale': True}]}}, 'shuffle': False, 'num_workers': 4, 'drop_last': False, 'collate_fn': {'type': 'BatchImageCollateFunction'}, 'total_batch_size': 64}, 'print_freq': 100, 'output_dir': './output/deim_rtdetrv2_r18vd_120e_coco', 'checkpoint_freq': 4, 'sync_bn': True, 'find_unused_parameters': False, 'use_amp': False, 'scaler': {'type': 'GradScaler', 'enabled': True}, 'use_ema': True, 'ema': {'type': 'ModelEMA', 'decay': 0.9999, 'warmups': 2000, 'start': 0}, 'epoches': 120, 'clip_max_norm': 0.1, 'optimizer': {'type': 'AdamW', 'params': [{'params': '^(?=.*(?:norm|bn)).*$', 'weight_decay': 0.0}], 'lr': 0.0002, 'betas': [0.9, 0.999], 'weight_decay': 0.0001}, 'lr_scheduler': {'type': 'MultiStepLR', 'milestones': [1000], 'gamma': 0.1}, 'lr_warmup_scheduler': {'type': 'LinearWarmup', 'warmup_duration': 2000}, 'model': 'DEIM', 'criterion': 'DEIMCriterion', 'postprocessor': 'PostProcessor', 'use_focal_loss': True, 'eval_spatial_size': [640, 640], 'DEIM': {'backbone': 'PResNet', 'encoder': 'HybridEncoder', 'decoder': 'RTDETRTransformerv2'}, 'lrsheduler': 'flatcosine', 'lr_gamma': 0.5, 'warmup_iter': 2000, 'flat_epoch': 64, 'no_aug_epoch': 3, 'PResNet': {'depth': 18, 'variant': 'd', 'freeze_at': -1, 'return_idx': [1, 2, 3], 'num_stages': 4, 'freeze_norm': False, 'pretrained': True, 'local_model_dir': '../RT-DETR-main/rtdetrv2_pytorch/INK1k/'}, 'HybridEncoder': {'in_channels': [128, 256, 512], 'feat_strides': [8, 16, 32], 'hidden_dim': 256, 'use_encoder_idx': [2], 'num_encoder_layers': 1, 'nhead': 8, 'dim_feedforward': 1024, 'dropout': 0.0, 'enc_act': 'gelu', 'expansion': 0.5, 'depth_mult': 1, 'act': 'silu', 'version': 'rt_detrv2'}, 'RTDETRTransformerv2': {'feat_channels': [256, 256, 256], 'feat_strides': [8, 16, 32], 'hidden_dim': 256, 'num_levels': 3, 'num_layers': 3, 'num_queries': 300, 'num_denoising': 100, 'label_noise_ratio': 0.5, 'box_noise_scale': 1.0, 'eval_idx': -1, 'num_points': [4, 4, 4], 'cross_attn_method': 'default', 'query_select_method': 'default', 'query_pos_method': 'as_reg', 'activation': 'silu', 'mlp_act': 'silu'}, 'PostProcessor': {'num_top_queries': 300}, 'DEIMCriterion': {'weight_dict': {'loss_vfl': 1, 'loss_bbox': 5, 'loss_giou': 2, 'loss_mal': 1}, 'losses': ['mal', 'boxes'], 'alpha': 0.75, 'gamma': 1.5, 'use_uni_set': False, 'matcher': {'type': 'HungarianMatcher', 'weight_dict': {'cost_class': 2, 'cost_bbox': 5, 'cost_giou': 2}, 'alpha': 0.25, 'gamma': 2.0}}, '__include__': ['./rtdetrv2_r18vd_120e_coco.yml', '../base/rt_deim.yml'], 'config': 'configs/deim_rtdetrv2/deim_r18vd_120e_coco.yml', 'resume': 'models/deim_rtdetrv2_r18vd_coco_120e.pth', 'test_only': False, 'print_method': 'builtin', 'print_rank': 0}}
Loaded PResNet18 from local file@../RT-DETR-main/rtdetrv2_pytorch/INK1k/ResNet18_vd_pretrained_from_paddle.pth.
Load PResNet18 state_dict
### Query Position Embedding@as_reg ###
Initial lr: [0.0002, 0.0002]
building train_dataloader with batch_size=16...
### Transform @Mosaic ###
### Transform @RandomPhotometricDistort ###
### Transform @RandomZoomOut ###
### Transform @RandomIoUCrop ###
### Transform @SanitizeBoundingBoxes ###
### Transform @RandomHorizontalFlip ###
### Transform @Resize ###
### Transform @SanitizeBoundingBoxes ###
### Transform @ConvertPILImage ###
### Transform @ConvertBoxes ###
### Mosaic with Prob.@0.5 and ZoomOut/IoUCrop existed ###
### ImgTransforms Epochs: [4, 64, 117] ###
### Policy_ops@['Mosaic', 'RandomPhotometricDistort', 'RandomZoomOut', 'RandomIoUCrop'] ###
### Using MixUp with Prob@0.5 in [4, 64] epochs ###
### Multi-scale Training until 117 epochs ###
### Multi-scales@ [480, 512, 544, 576, 608, 640, 640, 640, 800, 768, 736, 704, 672] ###
building val_dataloader with batch_size=64...
### Transform @Resize ###
### Transform @ConvertPILImage ###
Resume checkpoint from models/deim_rtdetrv2_r18vd_coco_120e.pth
Load model.state_dict
Not load criterion.state_dict
Not load postprocessor.state_dict
Load ema.state_dict from model.state_dict
Not load optimizer.state_dict
Not load lr_scheduler.state_dict
Not load lr_warmup_scheduler.state_dict
------------------------------------- Calculate Flops Results -------------------------------------
Notations:
number of parameters (Params), number of multiply-accumulate operations(MACs),
number of floating-point operations (FLOPs), floating-point operations per second (FLOPS),
fwd FLOPs (model forward propagation FLOPs), bwd FLOPs (model backward propagation FLOPs),
default model backpropagation takes 2.00 times as much computation as forward propagation.
Total Training Params: 19.98 M
fwd MACs: 30.0313 GMACs
fwd FLOPs: 60.2087 GFLOPS
fwd+bwd MACs: 90.0938 GMACs
fwd+bwd FLOPs: 180.626 GFLOPS
---------------------------------------------------------------------------------------------------
{'Model FLOPs:60.2087 GFLOPS MACs:30.0313 GMACs Params:19979152'}
------------------------------------------Start training-------------------------------------------
## Using Self-defined Scheduler-flatcosine ##
[0.0002, 0.0002] [0.0001, 0.0001] 0 2000 0 0
number of trainable parameters: 20183440
>>>>>> iterable : 0
Traceback (most recent call last):
File "E:\Data Research\DEIM\train.py", line 84, in <module>
main(args)
File "E:\Data Research\DEIM\train.py", line 54, in main
solver.fit()
File "E:\Data Research\DEIM\engine\solver\det_solver.py", line 108, in fit
test_stats, coco_evaluator = evaluate(
^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\engine\solver\det_engine.py", line 140, in evaluate
for samples, targets in metric_logger.log_every(data_loader, 10, header):
File "E:\Data Research\DEIM\engine\misc\logger.py", line 215, in log_every
for obj in iterable:
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 708, in __next__
data = self._next_data()
^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 1480, in _next_data
return self._process_data(data)
^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\dataloader.py", line 1505, in _process_data
data.reraise()
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\_utils.py", line 733, in reraise
raise exception
NotImplementedError: Caught NotImplementedError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\_utils\worker.py", line 349, in _worker_loop
data = fetcher.fetch(index) # type: ignore[possibly-undefined]
^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 52, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\utils\data\_utils\fetch.py", line 52, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
~~~~~~~~~~~~^^^^^
File "E:\Data Research\DEIM\engine\data\dataset\coco_dataset.py", line 45, in __getitem__
img, target, _ = self._transforms(img, target, self)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\engine\data\transforms\container.py", line 58, in forward
return self.get_forward(self.policy['name'])(*inputs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\engine\data\transforms\container.py", line 71, in default_forward
sample = transform(sample)
^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torchvision\transforms\v2\_transform.py", line 68, in forward
flat_outputs = [
^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torchvision\transforms\v2\_transform.py", line 69, in <listcomp>
self.transform(inpt, params) if needs_transform else inpt
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "E:\Data Research\DEIM\.venv\Lib\site-packages\torchvision\transforms\v2\_transform.py", line 55, in transform
raise NotImplementedError
NotImplementedErrorPlease help me this problem asap.
Metadata
Metadata
Assignees
Labels
No labels