Model Config ============= * `nnetType` : (Mandatory) Type of Network (CNN/RBM/SDA/DNN) * `train_data` : (Mandatory) The working directory containing data configuration and output * `wdir` : (Mandatory) Working Directory. * `data_spec` : (Mandatory) The path of the data sepification relative to `model_config.json` * `nnet_spec` : (Mandatory) The path of network configuration specification relative to `model_config.json` * `output_file` : (Mandatory) The path of RBM network output file relative to `wdir` * `input_file` : The path of PreTrained/FineTuned network input file relative to `wdir`.(Mandatory for DNN) * `logger_level` : Level of Logger.Valid Values are "INFO","DEBUG" and "ERROR" * `batch_size` : specify the mini batch size while training, default 128 * `n_ins` :Dimension of input (Mandatory for all except CNN) * `n_outs` :(Mandatory) Dimension of output (No: of Classes) * `input_shape`: The input shape of a given feature vector.(Mandatory For CNN).Should be an Array. * `finetune_method` : Two methods are supported > 1. C: Constant learning rate. > 2. E: Exponential decay. * `finetune_rate` : Configuration of learning method.Contains a json object with following params > param | description | default value |learning method > :-----------------------|:--------------------------------------|:--------------:|:---------------: > `learning_rate` | |0.08 | C > `epoch_num` | |10 | C > `start_rate` | |0.08 | E > `scale_by` | |0.5 | E > `min_derror_decay_start`| |0.05 | E > `min_derror_stop` | |0.05 | E > `min_epoch_decay_start` | | 15 | E * `finetune_momentum` : The momentum factor while finetuning * `export_path` : path (realative to `wdir`) for writting (bottleneck) features. * `processes` : Process should be run by program.Contains a json object with following params > * `pretraining` : whether Pre-Training is needed.(invalid for DNN and CNN).(Default value = false) > * `finetuning` : whether Fine Tuning is needed.(Default value = false) > * `testing` : whether Fine Tuning is needed.(Default value = false) > * `export_data` : whether extracted features should written to file.If true,`export_path` is required.(Default value = false). ######Specific to DBN(RBM)###### * `gbrbm_learning_rate` : Pretraining learning rate for gbrbm layer.(Default Value = 0.005) * `pretraining_learning_rate` : Pretraining learning rate for all layers except gbrbm layer.(Default Value = 0.08) * `pretraining_epochs` :No of Pretraining epochs(Default Value = 10) * `initial_pretrain_momentum` :The initial momentum factor while pre-training (Default Value = 0.5) * `final_pretrain_momentum` :The final momentum factor while pre-training (Default Value = 0.9) * `initial_pretrain_momentum_epoch` : No: of epochs with the initial momentum factor before switching to final momentum factor.(Default Value = 5) * `keep_layer_num`: From which layer Pre-Trainig Should Start.(Default Value = 0).If non-Zero layer is intilaized with weights from `input_file` ######Specific to SDA###### * `pretrain_lr` :learning rate to be used during pre-training (Default Value = 0.08). _____________________________________________________________________________________________ **Also See**: * [Example-CNN](../sample_config/MNIST/CNN/model_config.json) * [Example-RBM](../sample_config/MNIST/DBN/model_config.json) * [Example-SDA](../sample_config/MNIST/SDA/model_config.json)