@@ -75,11 +75,8 @@ def create_llm(config: AgentConfig) -> BaseChatModel:
7575 }
7676
7777 if provider not in providers :
78- raise ValueError (
79- f"Unsupported LLM provider: { provider } . "
80- f"Supported providers: { ', ' .join (providers .keys ())} "
81- )
82-
78+ raise ValueError (f"Unsupported LLM provider: { provider } . " f"Supported providers: { ', ' .join (providers .keys ())} " )
79+
8380 return providers [provider ](config , common_args )
8481
8582
@@ -89,11 +86,7 @@ def _create_openai_llm(config: AgentConfig, common_args: Dict[str, Any]) -> Base
8986 if not config .openai_api_key :
9087 raise ValueError ("OPENAI_API_KEY is required for OpenAI provider" )
9188
92- openai_args = {
93- "model" : config .default_model ,
94- "api_key" : config .openai_api_key ,
95- ** common_args
96- }
89+ openai_args = {"model" : config .default_model , "api_key" : config .openai_api_key , ** common_args }
9790
9891 if config .openai_base_url :
9992 openai_args ["base_url" ] = config .openai_base_url
@@ -106,45 +99,26 @@ def _create_openai_llm(config: AgentConfig, common_args: Dict[str, Any]) -> Base
10699def _create_azure_llm (config : AgentConfig , common_args : Dict [str , Any ]) -> BaseChatModel :
107100 """Create Azure OpenAI LLM instance."""
108101
109- required_fields = [
110- config .azure_openai_api_key ,
111- config .azure_openai_endpoint ,
112- config .azure_deployment_name
113- ]
102+ required_fields = [config .azure_openai_api_key , config .azure_openai_endpoint , config .azure_deployment_name ]
114103
115104 if not all (required_fields ):
116- raise ValueError (
117- "Azure OpenAI requires AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, and AZURE_DEPLOYMENT_NAME"
118- )
119-
105+ raise ValueError ("Azure OpenAI requires AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, and AZURE_DEPLOYMENT_NAME" )
106+
120107 return AzureChatOpenAI (
121- api_key = config .azure_openai_api_key ,
122- azure_endpoint = config .azure_openai_endpoint ,
123- api_version = config .azure_openai_api_version ,
124- azure_deployment = config .azure_deployment_name ,
125- ** common_args
108+ api_key = config .azure_openai_api_key , azure_endpoint = config .azure_openai_endpoint , api_version = config .azure_openai_api_version , azure_deployment = config .azure_deployment_name , ** common_args
126109 )
127110
128111
129112def _create_bedrock_llm (config : AgentConfig , common_args : Dict [str , Any ]) -> BaseChatModel :
130113 """Create AWS Bedrock LLM instance."""
131114
132115 if BedrockChat is None :
133- raise ImportError (
134- "langchain-aws is required for Bedrock support. "
135- "Install with: pip install langchain-aws"
136- )
137-
138- required_fields = [
139- config .aws_access_key_id ,
140- config .aws_secret_access_key ,
141- config .bedrock_model_id
142- ]
116+ raise ImportError ("langchain-aws is required for Bedrock support. " "Install with: pip install langchain-aws" )
117+
118+ required_fields = [config .aws_access_key_id , config .aws_secret_access_key , config .bedrock_model_id ]
143119
144120 if not all (required_fields ):
145- raise ValueError (
146- "AWS Bedrock requires AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and BEDROCK_MODEL_ID"
147- )
121+ raise ValueError ("AWS Bedrock requires AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and BEDROCK_MODEL_ID" )
148122
149123 return BedrockChat (
150124 model_id = config .bedrock_model_id ,
@@ -157,37 +131,23 @@ def _create_bedrock_llm(config: AgentConfig, common_args: Dict[str, Any]) -> Bas
157131def _create_ollama_llm (config : AgentConfig , common_args : Dict [str , Any ]) -> BaseChatModel :
158132 """Create OLLAMA LLM instance."""
159133 if ChatOllama is None :
160- raise ImportError (
161- "langchain-community is required for OLLAMA support. "
162- "Install with: pip install langchain-community"
163- )
164-
134+ raise ImportError ("langchain-community is required for OLLAMA support. " "Install with: pip install langchain-community" )
135+
165136 if not config .ollama_model :
166137 raise ValueError ("OLLAMA_MODEL is required for OLLAMA provider" )
167-
168- return ChatOllama (
169- model = config .ollama_model ,
170- base_url = config .ollama_base_url ,
171- ** common_args
172- )
138+
139+ return ChatOllama (model = config .ollama_model , base_url = config .ollama_base_url , ** common_args )
173140
174141
175142def _create_anthropic_llm (config : AgentConfig , common_args : Dict [str , Any ]) -> BaseChatModel :
176143 """Create Anthropic LLM instance."""
177144 if ChatAnthropic is None :
178- raise ImportError (
179- "langchain-anthropic is required for Anthropic support. "
180- "Install with: pip install langchain-anthropic"
181- )
182-
145+ raise ImportError ("langchain-anthropic is required for Anthropic support. " "Install with: pip install langchain-anthropic" )
146+
183147 if not config .anthropic_api_key :
184148 raise ValueError ("ANTHROPIC_API_KEY is required for Anthropic provider" )
185149
186- return ChatAnthropic (
187- model = config .default_model ,
188- api_key = config .anthropic_api_key ,
189- ** common_args
190- )
150+ return ChatAnthropic (model = config .default_model , api_key = config .anthropic_api_key , ** common_args )
191151
192152
193153class MCPTool (BaseTool ):
@@ -371,12 +331,7 @@ def is_initialized(self) -> bool:
371331 async def check_readiness (self ) -> bool :
372332 """Check if agent is ready to handle requests"""
373333 try :
374- return (
375- self ._initialized
376- and self .agent_executor is not None
377- and len (self .tools ) >= 0 # Allow 0 tools for testing
378- and await self .test_gateway_connection ()
379- )
334+ return self ._initialized and self .agent_executor is not None and len (self .tools ) >= 0 and await self .test_gateway_connection () # Allow 0 tools for testing
380335 except Exception :
381336 return False
382337
@@ -428,9 +383,7 @@ async def run_async(
428383 chat_history .append (SystemMessage (content = msg ["content" ]))
429384
430385 # Run the agent
431- result = await self .agent_executor .ainvoke (
432- {"input" : input_text , "chat_history" : chat_history , "tool_names" : [tool .name for tool in self .tools ]}
433- )
386+ result = await self .agent_executor .ainvoke ({"input" : input_text , "chat_history" : chat_history , "tool_names" : [tool .name for tool in self .tools ]})
434387
435388 return result ["output" ]
436389
0 commit comments