Skip to content

Don't assume parameter presence in hierarchical likelihood #41

@bfarr

Description

@bfarr

The posterior predictive checks in hierarchical_likelihood() assume mass_1 and mass_ratio are present in pedata and injdata, e.g.,

if posterior_predictive_check:
if param_names is not None and injdata is not None and pedata is not None:
pe_weights = jnp.exp(logpe_weights)
inj_weights = jnp.exp(loginj_weights)
cond = jnp.less(pedata["mass_1"], m1min) | jnp.greater(pedata["mass_1"], mmax)

which shouldn't be required.

Metadata

Metadata

Assignees

Labels

bugSomething isn't workinggood first issueGood for newcomers

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions