|
1 | 1 | using Reactant, Test |
2 | | -using Reactant: TracedRArray, TracedRNumber, MLIR, TracedUtils, ConcreteRArray |
| 2 | +using Reactant: |
| 3 | + TracedRArray, TracedRNumber, MLIR, TracedUtils, ConcreteRArray, ConcreteRNumber |
3 | 4 | using Reactant.MLIR: IR |
4 | 5 | using Reactant.MLIR.Dialects: enzyme |
| 6 | +using Statistics |
5 | 7 |
|
6 | 8 | # `enzyme.randomSplit` op is not intended to be emitted directly in Reactant-land. |
7 | 9 | # It is solely an intermediate representation within the `enzyme.mcmc` op lowering. |
|
49 | 51 | @test Array(k4) == [0xe4e8dfbe9312778b, 0x982ff5502e6ccb51] |
50 | 52 | end |
51 | 53 | end |
| 54 | + |
| 55 | +# Similarly, `enzyme.random` op is not intended to be emitted directly in Reactant-land. |
| 56 | +# It is solely an intermediate representation within the `enzyme.mcmc` op lowering. |
| 57 | +function rng_distribution_attr(distribution::Int32) |
| 58 | + return @ccall MLIR.API.mlir_c.enzymeRngDistributionAttrGet( |
| 59 | + MLIR.IR.context()::MLIR.API.MlirContext, distribution::Int32 |
| 60 | + )::MLIR.IR.Attribute |
| 61 | +end |
| 62 | + |
| 63 | +const RNG_UNIFORM = Int32(0) |
| 64 | +const RNG_NORMAL = Int32(1) |
| 65 | +const RNG_MULTINORMAL = Int32(2) |
| 66 | + |
| 67 | +function uniform_batch( |
| 68 | + rng_state::TracedRArray{UInt64,1}, |
| 69 | + a::TracedRNumber{Float64}, |
| 70 | + b::TracedRNumber{Float64}, |
| 71 | + ::Val{BatchSize}, |
| 72 | +) where {BatchSize} |
| 73 | + rng_mlir = TracedUtils.get_mlir_data(rng_state) |
| 74 | + a_mlir = TracedUtils.get_mlir_data(a) |
| 75 | + b_mlir = TracedUtils.get_mlir_data(b) |
| 76 | + |
| 77 | + rng_state_type = IR.TensorType([2], IR.Type(UInt64)) |
| 78 | + result_type = IR.TensorType([BatchSize], IR.Type(Float64)) |
| 79 | + dist_attr = rng_distribution_attr(RNG_UNIFORM) |
| 80 | + |
| 81 | + op = enzyme.random( |
| 82 | + rng_mlir, |
| 83 | + a_mlir, |
| 84 | + b_mlir; |
| 85 | + output_rng_state=rng_state_type, |
| 86 | + result=result_type, |
| 87 | + rng_distribution=dist_attr, |
| 88 | + ) |
| 89 | + |
| 90 | + final_rng = TracedRArray{UInt64,1}((), IR.result(op, 1), (2,)) |
| 91 | + samples = TracedRArray{Float64,1}((), IR.result(op, 2), (BatchSize,)) |
| 92 | + return final_rng, samples |
| 93 | +end |
| 94 | + |
| 95 | +function normal_batch( |
| 96 | + rng_state::TracedRArray{UInt64,1}, |
| 97 | + μ::TracedRNumber{Float64}, |
| 98 | + σ::TracedRNumber{Float64}, |
| 99 | + ::Val{BatchSize}, |
| 100 | +) where {BatchSize} |
| 101 | + rng_mlir = TracedUtils.get_mlir_data(rng_state) |
| 102 | + μ_mlir = TracedUtils.get_mlir_data(μ) |
| 103 | + σ_mlir = TracedUtils.get_mlir_data(σ) |
| 104 | + |
| 105 | + rng_state_type = IR.TensorType([2], IR.Type(UInt64)) |
| 106 | + result_type = IR.TensorType([BatchSize], IR.Type(Float64)) |
| 107 | + dist_attr = rng_distribution_attr(RNG_NORMAL) |
| 108 | + |
| 109 | + op = enzyme.random( |
| 110 | + rng_mlir, |
| 111 | + μ_mlir, |
| 112 | + σ_mlir; |
| 113 | + output_rng_state=rng_state_type, |
| 114 | + result=result_type, |
| 115 | + rng_distribution=dist_attr, |
| 116 | + ) |
| 117 | + |
| 118 | + final_rng = TracedRArray{UInt64,1}((), IR.result(op, 1), (2,)) |
| 119 | + samples = TracedRArray{Float64,1}((), IR.result(op, 2), (BatchSize,)) |
| 120 | + return final_rng, samples |
| 121 | +end |
| 122 | + |
| 123 | +function multinormal_sample( |
| 124 | + rng_state::TracedRArray{UInt64,1}, |
| 125 | + μ::TracedRArray{Float64,1}, |
| 126 | + Σ::TracedRArray{Float64,2}, |
| 127 | + ::Val{Dim}, |
| 128 | +) where {Dim} |
| 129 | + rng_mlir = TracedUtils.get_mlir_data(rng_state) |
| 130 | + μ_mlir = TracedUtils.get_mlir_data(μ) |
| 131 | + Σ_mlir = TracedUtils.get_mlir_data(Σ) |
| 132 | + |
| 133 | + rng_state_type = IR.TensorType([2], IR.Type(UInt64)) |
| 134 | + result_type = IR.TensorType([Dim], IR.Type(Float64)) |
| 135 | + dist_attr = rng_distribution_attr(RNG_MULTINORMAL) |
| 136 | + |
| 137 | + op = enzyme.random( |
| 138 | + rng_mlir, |
| 139 | + μ_mlir, |
| 140 | + Σ_mlir; |
| 141 | + output_rng_state=rng_state_type, |
| 142 | + result=result_type, |
| 143 | + rng_distribution=dist_attr, |
| 144 | + ) |
| 145 | + |
| 146 | + final_rng = TracedRArray{UInt64,1}((), IR.result(op, 1), (2,)) |
| 147 | + sample = TracedRArray{Float64,1}((), IR.result(op, 2), (Dim,)) |
| 148 | + return final_rng, sample |
| 149 | +end |
| 150 | + |
| 151 | +# https://en.wikipedia.org/wiki/Standard_error#Exact_value |
| 152 | +se_mean(σ, n) = σ / sqrt(n) |
| 153 | +# https://en.wikipedia.org/wiki/Variance#Distribution_of_the_sample_variance |
| 154 | +se_var(σ², n) = σ² * sqrt(2 / (n - 1)) |
| 155 | +se_std(σ, n) = σ / sqrt(2 * (n - 1)) |
| 156 | +se_cov(σᵢ, σⱼ, ρ, n) = sqrt((σᵢ^2 * σⱼ^2 + (ρ * σᵢ * σⱼ)^2) / (n - 1)) # ρ = correlation |
| 157 | + |
| 158 | +const N_SIGMA = 5 |
| 159 | + |
| 160 | +@testset "enzyme.random op - UNIFORM distribution" begin |
| 161 | + batch_size = 10000 |
| 162 | + n_batches = 10 |
| 163 | + n_samples = batch_size * n_batches |
| 164 | + |
| 165 | + @testset "Uniform[0, 1)" begin |
| 166 | + seed = ConcreteRArray(UInt64[42, 123]) |
| 167 | + a = ConcreteRNumber(0.0) |
| 168 | + b = ConcreteRNumber(1.0) |
| 169 | + |
| 170 | + compiled_fn = @compile optimize = :probprog uniform_batch( |
| 171 | + seed, a, b, Val(batch_size) |
| 172 | + ) |
| 173 | + |
| 174 | + all_samples = Float64[] |
| 175 | + rng = seed |
| 176 | + for _ in 1:n_batches |
| 177 | + rng, samples = compiled_fn(rng, a, b, Val(batch_size)) |
| 178 | + append!(all_samples, Array(samples)) |
| 179 | + end |
| 180 | + |
| 181 | + expected_mean = 0.5 |
| 182 | + expected_var = 1.0 / 12.0 |
| 183 | + expected_std = sqrt(expected_var) |
| 184 | + |
| 185 | + @test all(all_samples .>= 0.0) |
| 186 | + @test all(all_samples .< 1.0) |
| 187 | + @test mean(all_samples) ≈ expected_mean atol = |
| 188 | + N_SIGMA * se_mean(expected_std, n_samples) |
| 189 | + @test var(all_samples) ≈ expected_var atol = |
| 190 | + N_SIGMA * se_var(expected_var, n_samples) |
| 191 | + end |
| 192 | + |
| 193 | + @testset "Uniform[-5, 5)" begin |
| 194 | + seed = ConcreteRArray(UInt64[99, 77]) |
| 195 | + a = ConcreteRNumber(-5.0) |
| 196 | + b = ConcreteRNumber(5.0) |
| 197 | + |
| 198 | + compiled_fn = @compile optimize = :probprog uniform_batch( |
| 199 | + seed, a, b, Val(batch_size) |
| 200 | + ) |
| 201 | + |
| 202 | + all_samples = Float64[] |
| 203 | + rng = seed |
| 204 | + for _ in 1:n_batches |
| 205 | + rng, samples = compiled_fn(rng, a, b, Val(batch_size)) |
| 206 | + append!(all_samples, Array(samples)) |
| 207 | + end |
| 208 | + |
| 209 | + expected_mean = 0.0 |
| 210 | + expected_var = 100.0 / 12.0 |
| 211 | + expected_std = sqrt(expected_var) |
| 212 | + |
| 213 | + @test all(all_samples .>= -5.0) |
| 214 | + @test all(all_samples .< 5.0) |
| 215 | + @test mean(all_samples) ≈ expected_mean atol = |
| 216 | + N_SIGMA * se_mean(expected_std, n_samples) |
| 217 | + @test var(all_samples) ≈ expected_var atol = |
| 218 | + N_SIGMA * se_var(expected_var, n_samples) |
| 219 | + end |
| 220 | + |
| 221 | + @testset "Uniform[10, 20)" begin |
| 222 | + seed = ConcreteRArray(UInt64[11, 22]) |
| 223 | + a = ConcreteRNumber(10.0) |
| 224 | + b = ConcreteRNumber(20.0) |
| 225 | + |
| 226 | + compiled_fn = @compile optimize = :probprog uniform_batch( |
| 227 | + seed, a, b, Val(batch_size) |
| 228 | + ) |
| 229 | + |
| 230 | + all_samples = Float64[] |
| 231 | + rng = seed |
| 232 | + for _ in 1:n_batches |
| 233 | + rng, samples = compiled_fn(rng, a, b, Val(batch_size)) |
| 234 | + append!(all_samples, Array(samples)) |
| 235 | + end |
| 236 | + |
| 237 | + expected_mean = 15.0 |
| 238 | + expected_var = 100.0 / 12.0 |
| 239 | + expected_std = sqrt(expected_var) |
| 240 | + |
| 241 | + @test all(all_samples .>= 10.0) |
| 242 | + @test all(all_samples .< 20.0) |
| 243 | + @test mean(all_samples) ≈ expected_mean atol = |
| 244 | + N_SIGMA * se_mean(expected_std, n_samples) |
| 245 | + @test var(all_samples) ≈ expected_var atol = |
| 246 | + N_SIGMA * se_var(expected_var, n_samples) |
| 247 | + end |
| 248 | +end |
| 249 | + |
| 250 | +@testset "enzyme.random op - NORMAL distribution" begin |
| 251 | + batch_size = 10000 |
| 252 | + n_batches = 10 |
| 253 | + n_samples = batch_size * n_batches |
| 254 | + |
| 255 | + @testset "Standard Gaussian" begin |
| 256 | + seed = ConcreteRArray(UInt64[42, 42]) |
| 257 | + μ = ConcreteRNumber(0.0) |
| 258 | + σ = ConcreteRNumber(1.0) |
| 259 | + |
| 260 | + compiled_fn = @compile optimize = :probprog normal_batch( |
| 261 | + seed, μ, σ, Val(batch_size) |
| 262 | + ) |
| 263 | + |
| 264 | + all_samples = Float64[] |
| 265 | + rng = seed |
| 266 | + for _ in 1:n_batches |
| 267 | + rng, samples = compiled_fn(rng, μ, σ, Val(batch_size)) |
| 268 | + append!(all_samples, Array(samples)) |
| 269 | + end |
| 270 | + |
| 271 | + expected_std = 1.0 |
| 272 | + @test mean(all_samples) ≈ 0.0 atol = N_SIGMA * se_mean(expected_std, n_samples) |
| 273 | + @test std(all_samples) ≈ expected_std atol = |
| 274 | + N_SIGMA * se_std(expected_std, n_samples) |
| 275 | + end |
| 276 | + |
| 277 | + @testset "Normal(5, 2)" begin |
| 278 | + seed = ConcreteRArray(UInt64[100, 200]) |
| 279 | + μ = ConcreteRNumber(5.0) |
| 280 | + σ = ConcreteRNumber(2.0) |
| 281 | + |
| 282 | + compiled_fn = @compile optimize = :probprog normal_batch( |
| 283 | + seed, μ, σ, Val(batch_size) |
| 284 | + ) |
| 285 | + |
| 286 | + all_samples = Float64[] |
| 287 | + rng = seed |
| 288 | + for _ in 1:n_batches |
| 289 | + rng, samples = compiled_fn(rng, μ, σ, Val(batch_size)) |
| 290 | + append!(all_samples, Array(samples)) |
| 291 | + end |
| 292 | + |
| 293 | + expected_std = 2.0 |
| 294 | + @test mean(all_samples) ≈ 5.0 atol = N_SIGMA * se_mean(expected_std, n_samples) |
| 295 | + @test std(all_samples) ≈ expected_std atol = |
| 296 | + N_SIGMA * se_std(expected_std, n_samples) |
| 297 | + end |
| 298 | + |
| 299 | + @testset "Normal(-3, 0.5)" begin |
| 300 | + seed = ConcreteRArray(UInt64[333, 444]) |
| 301 | + μ = ConcreteRNumber(-3.0) |
| 302 | + σ = ConcreteRNumber(0.5) |
| 303 | + |
| 304 | + compiled_fn = @compile optimize = :probprog normal_batch( |
| 305 | + seed, μ, σ, Val(batch_size) |
| 306 | + ) |
| 307 | + |
| 308 | + all_samples = Float64[] |
| 309 | + rng = seed |
| 310 | + for _ in 1:n_batches |
| 311 | + rng, samples = compiled_fn(rng, μ, σ, Val(batch_size)) |
| 312 | + append!(all_samples, Array(samples)) |
| 313 | + end |
| 314 | + |
| 315 | + expected_std = 0.5 |
| 316 | + @test mean(all_samples) ≈ -3.0 atol = N_SIGMA * se_mean(expected_std, n_samples) |
| 317 | + @test std(all_samples) ≈ expected_std atol = |
| 318 | + N_SIGMA * se_std(expected_std, n_samples) |
| 319 | + end |
| 320 | +end |
| 321 | + |
| 322 | +@testset "enzyme.random op - MULTINORMAL distribution" begin |
| 323 | + n_samples = 2000 |
| 324 | + |
| 325 | + @testset "2D Standard Multivariate Normal" begin |
| 326 | + seed = ConcreteRArray(UInt64[55, 66]) |
| 327 | + μ = ConcreteRArray([0.0, 0.0]) |
| 328 | + Σ = ConcreteRArray([1.0 0.0; 0.0 1.0]) |
| 329 | + |
| 330 | + σ₁, σ₂, ρ₁₂ = 1.0, 1.0, 0.0 |
| 331 | + |
| 332 | + compiled_fn = @compile optimize = :probprog multinormal_sample(seed, μ, Σ, Val(2)) |
| 333 | + |
| 334 | + samples_matrix = zeros(n_samples, 2) |
| 335 | + rng = seed |
| 336 | + for i in 1:n_samples |
| 337 | + rng, sample = compiled_fn(rng, μ, Σ, Val(2)) |
| 338 | + samples_matrix[i, :] = Array(sample) |
| 339 | + end |
| 340 | + |
| 341 | + sample_means = vec(mean(samples_matrix; dims=1)) |
| 342 | + @test sample_means[1] ≈ 0.0 atol = N_SIGMA * se_mean(σ₁, n_samples) |
| 343 | + @test sample_means[2] ≈ 0.0 atol = N_SIGMA * se_mean(σ₂, n_samples) |
| 344 | + |
| 345 | + sample_cov = cov(samples_matrix) |
| 346 | + @test sample_cov[1, 1] ≈ 1.0 atol = N_SIGMA * se_cov(σ₁, σ₁, 1.0, n_samples) |
| 347 | + @test sample_cov[2, 2] ≈ 1.0 atol = N_SIGMA * se_cov(σ₂, σ₂, 1.0, n_samples) |
| 348 | + @test sample_cov[1, 2] ≈ 0.0 atol = N_SIGMA * se_cov(σ₁, σ₂, ρ₁₂, n_samples) |
| 349 | + @test sample_cov[2, 1] ≈ 0.0 atol = N_SIGMA * se_cov(σ₁, σ₂, ρ₁₂, n_samples) |
| 350 | + end |
| 351 | + |
| 352 | + @testset "2D Correlated Multivariate Normal" begin |
| 353 | + seed = ConcreteRArray(UInt64[77, 88]) |
| 354 | + μ = ConcreteRArray([2.0, -1.0]) |
| 355 | + Σ = ConcreteRArray([4.0 1.5; 1.5 2.0]) |
| 356 | + |
| 357 | + σ₁, σ₂ = 2.0, sqrt(2.0) |
| 358 | + ρ₁₂ = 1.5 / (σ₁ * σ₂) |
| 359 | + |
| 360 | + compiled_fn = @compile optimize = :probprog multinormal_sample(seed, μ, Σ, Val(2)) |
| 361 | + |
| 362 | + samples_matrix = zeros(n_samples, 2) |
| 363 | + rng = seed |
| 364 | + for i in 1:n_samples |
| 365 | + rng, sample = compiled_fn(rng, μ, Σ, Val(2)) |
| 366 | + samples_matrix[i, :] = Array(sample) |
| 367 | + end |
| 368 | + |
| 369 | + sample_means = vec(mean(samples_matrix; dims=1)) |
| 370 | + @test sample_means[1] ≈ 2.0 atol = N_SIGMA * se_mean(σ₁, n_samples) |
| 371 | + @test sample_means[2] ≈ -1.0 atol = N_SIGMA * se_mean(σ₂, n_samples) |
| 372 | + |
| 373 | + sample_cov = cov(samples_matrix) |
| 374 | + @test sample_cov[1, 1] ≈ 4.0 atol = N_SIGMA * se_cov(σ₁, σ₁, 1.0, n_samples) |
| 375 | + @test sample_cov[2, 2] ≈ 2.0 atol = N_SIGMA * se_cov(σ₂, σ₂, 1.0, n_samples) |
| 376 | + @test sample_cov[1, 2] ≈ 1.5 atol = N_SIGMA * se_cov(σ₁, σ₂, ρ₁₂, n_samples) |
| 377 | + @test sample_cov[2, 1] ≈ 1.5 atol = N_SIGMA * se_cov(σ₁, σ₂, ρ₁₂, n_samples) |
| 378 | + end |
| 379 | + |
| 380 | + @testset "3D Multivariate Normal with diagonal covariance" begin |
| 381 | + seed = ConcreteRArray(UInt64[111, 222]) |
| 382 | + μ = ConcreteRArray([1.0, 2.0, 3.0]) |
| 383 | + Σ = ConcreteRArray([1.0 0.0 0.0; 0.0 4.0 0.0; 0.0 0.0 9.0]) |
| 384 | + |
| 385 | + σ₁, σ₂, σ₃ = 1.0, 2.0, 3.0 |
| 386 | + |
| 387 | + compiled_fn = @compile optimize = :probprog multinormal_sample(seed, μ, Σ, Val(3)) |
| 388 | + |
| 389 | + samples_matrix = zeros(n_samples, 3) |
| 390 | + rng = seed |
| 391 | + for i in 1:n_samples |
| 392 | + rng, sample = compiled_fn(rng, μ, Σ, Val(3)) |
| 393 | + samples_matrix[i, :] = Array(sample) |
| 394 | + end |
| 395 | + |
| 396 | + sample_means = vec(mean(samples_matrix; dims=1)) |
| 397 | + @test sample_means[1] ≈ 1.0 atol = N_SIGMA * se_mean(σ₁, n_samples) |
| 398 | + @test sample_means[2] ≈ 2.0 atol = N_SIGMA * se_mean(σ₂, n_samples) |
| 399 | + @test sample_means[3] ≈ 3.0 atol = N_SIGMA * se_mean(σ₃, n_samples) |
| 400 | + |
| 401 | + sample_cov = cov(samples_matrix) |
| 402 | + @test sample_cov[1, 1] ≈ 1.0 atol = N_SIGMA * se_cov(σ₁, σ₁, 1.0, n_samples) |
| 403 | + @test sample_cov[2, 2] ≈ 4.0 atol = N_SIGMA * se_cov(σ₂, σ₂, 1.0, n_samples) |
| 404 | + @test sample_cov[3, 3] ≈ 9.0 atol = N_SIGMA * se_cov(σ₃, σ₃, 1.0, n_samples) |
| 405 | + |
| 406 | + @test sample_cov[1, 2] ≈ 0.0 atol = N_SIGMA * se_cov(σ₁, σ₂, 0.0, n_samples) |
| 407 | + @test sample_cov[1, 3] ≈ 0.0 atol = N_SIGMA * se_cov(σ₁, σ₃, 0.0, n_samples) |
| 408 | + @test sample_cov[2, 3] ≈ 0.0 atol = N_SIGMA * se_cov(σ₂, σ₃, 0.0, n_samples) |
| 409 | + end |
| 410 | +end |
0 commit comments