-
Notifications
You must be signed in to change notification settings - Fork 9
Open
Labels
Description
The summary tables in the output have different total encounter rate CV's for dht versus dht2. Note the variability surrounding the estimates is the same for dht and dht2. It is posisble this is related to the inconsistent ways things are handled in the summary tables.
Simulated example to compare dht results with dht2 for different ER variance estimators R2, O2 and S2
R2 comparison
O2 comparison
S2 comparison
It is now as consistent as the others with only the total ER cv looking to have an issue
Simulation Code
library(dsims) outer1 <- matrix(c(0,0,1000,0,1000,500,0,500,0,0),ncol=2, byrow=TRUE) outer2 <- matrix(c(0,500,1000,500,1000,1000,0,1000,0,500),ncol=2, byrow=TRUE) outer3 <- matrix(c(0,1000,1000,1000,1000,1500,0,1500,0,1000),ncol=2, byrow=TRUE) pol1 <- sf::st_polygon(list(outer1)) pol2 <- sf::st_polygon(list(outer2)) pol3 <- sf::st_polygon(list(outer3)) sfc <- sf::st_sfc(pol1,pol2,pol3) strata.names <- c("South", "central", "North") mp1 <- sf::st_sf(strata = strata.names, geom = sfc) region <- make.region(region.name = "study.area", strata.name = strata.names, shape = mp1) plot(region) design <- make.design(region = region, samplers = rep(10,3), truncation = 10) pop.desc <- make.population.description(region = region, density = make.density(region= region), N = c(10, 250, 250)) detect <- make.detectability(scale.param = 5, truncation = 10) sim <- make.simulation(reps = 10, design = design, population.description = pop.desc, detectability = detect) set.seed(666) survey <- run.survey(sim) plot(survey) eg.data <- survey@dist.data fitR2 <- ds(eg.data, key = "hn", nadj = 0, er_var = "R2", truncation = 10) fitR2.dht <- fitR2$dht fitO2 <- ds(eg.data, key = "hn", nadj = 0, er_var = "O2", truncation = 10) fitO2.dht <- fitO2$dht fitS2 <- ds(eg.data, key = "hn", nadj = 0, er_var = "S2", truncation = 10) fitS2.dht <- fitS2$dht # Now use dht2 to check the results dht2.R2 <- dht2(fitR2.ddf, flatfile = eg.data, strat_formula = ~Region.Label, er_est = "R2", stratification = "geographical") dht2.O2 <- dht2(fitR2.ddf, flatfile = eg.data, strat_formula = ~Region.Label, er_est = "O2", stratification = "geographical") dht2.S2 <- dht2(fitR2.ddf, flatfile = eg.data, strat_formula = ~Region.Label, er_est = "S2", stratification = "geographical")
Originally posted by @LHMarshall in #174



