Skip to content

Commit 7ae09ff

Browse files
committed
update
1 parent 27663f5 commit 7ae09ff

File tree

9 files changed

+289
-231
lines changed

9 files changed

+289
-231
lines changed

doc/pub/week14/html/week14-bs.html

Lines changed: 17 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -93,6 +93,10 @@
9393
None,
9494
'kernels-and-non-linearity'),
9595
('Kernel trick', 2, None, 'kernel-trick'),
96+
('Visualization of the Kernel trick',
97+
2,
98+
None,
99+
'visualization-of-the-kernel-trick'),
96100
('The problem to solve', 2, None, 'the-problem-to-solve'),
97101
('Convex optimization', 2, None, 'convex-optimization'),
98102
('Different kernels', 2, None, 'different-kernels'),
@@ -283,6 +287,7 @@
283287
<!-- navigation toc: --> <li><a href="#new-constraints" style="font-size: 80%;">New constraints</a></li>
284288
<!-- navigation toc: --> <li><a href="#kernels-and-non-linearity" style="font-size: 80%;">Kernels and non-linearity</a></li>
285289
<!-- navigation toc: --> <li><a href="#kernel-trick" style="font-size: 80%;">Kernel trick</a></li>
290+
<!-- navigation toc: --> <li><a href="#visualization-of-the-kernel-trick" style="font-size: 80%;">Visualization of the Kernel trick</a></li>
286291
<!-- navigation toc: --> <li><a href="#the-problem-to-solve" style="font-size: 80%;">The problem to solve</a></li>
287292
<!-- navigation toc: --> <li><a href="#convex-optimization" style="font-size: 80%;">Convex optimization</a></li>
288293
<!-- navigation toc: --> <li><a href="#different-kernels" style="font-size: 80%;">Different kernels</a></li>
@@ -986,6 +991,15 @@ <h2 id="kernel-trick" class="anchor">Kernel trick </h2>
986991
\( \phi(\boldsymbol{x}_i)^T\phi(\boldsymbol{x}_j) \) during the SVM calculations.
987992
</p>
988993

994+
<!-- !split -->
995+
<h2 id="visualization-of-the-kernel-trick" class="anchor">Visualization of the Kernel trick </h2>
996+
997+
<br/><br/>
998+
<center>
999+
<p><img src="figures/kerneltrick.png" width="900" align="bottom"></p>
1000+
</center>
1001+
<br/><br/>
1002+
9891003
<!-- !split -->
9901004
<h2 id="the-problem-to-solve" class="anchor">The problem to solve </h2>
9911005
<p>Using our definition of the kernel We can rewrite again the Lagrangian</p>
@@ -1472,7 +1486,7 @@ <h2 id="quantum-kernels" class="anchor">Quantum kernels </h2>
14721486
(and theoretical definitions) use the squared overlap. In any case,
14731487
the kernel measures similarity: if \( \vert \phi(\boldsymbol{x})\rangle \) and
14741488
\( \vert \phi(\boldsymbol{x}&#8217;)\rangle \) are close in Hilbert space,
1475-
\( k(\boldsymbol{x},\boldsymbol{x}&#8217;) \) is large.
1489+
\( K(\boldsymbol{x},\boldsymbol{x}&#8217;) \) is large.
14761490
</p>
14771491

14781492
<!-- !split -->
@@ -1902,7 +1916,8 @@ <h2 id="and-nisq-quantum-kernels" class="anchor">And NISQ Quantum Kernels </h2>
19021916
possible quality or feature-based advantage: the quantum feature map
19031917
might separate data better than any known classical kernel. This
19041918
approach has been demonstrated on small datasets (e.g. Iris) and
1905-
studied theoretically. For example, Havlicek et al. showed on a toy
1919+
studied theoretically. For example, Havlicek <em>et al.</em>, see <a href="https://www.nature.com/articles/s41586-019-0980-2" target="_self"><tt>https://www.nature.com/articles/s41586-019-0980-2</tt></a>
1920+
showed on a toy
19061921
problem that a quantum kernel can correctly classify points that a
19071922
simple classical kernel cannot. However, other studies have found
19081923
that for random data classical kernels often suffice, so the advantage
@@ -2230,7 +2245,6 @@ <h2 id="computing-quantum-kernel-matrices" class="anchor">Computing Quantum Kern
22302245
</div>
22312246
</div>
22322247

2233-
<p>This is equivalent.</p>
22342248

22352249
<!-- !split -->
22362250
<h2 id="training-svm-with-precomputed-quantum-kernels" class="anchor">Training SVM with Precomputed Quantum Kernels </h2>

doc/pub/week14/html/week14-reveal.html

Lines changed: 13 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -876,6 +876,16 @@ <h2 id="kernel-trick">Kernel trick </h2>
876876
</p>
877877
</section>
878878

879+
<section>
880+
<h2 id="visualization-of-the-kernel-trick">Visualization of the Kernel trick </h2>
881+
882+
<br/><br/>
883+
<center>
884+
<p><img src="figures/kerneltrick.png" width="900" align="bottom"></p>
885+
</center>
886+
<br/><br/>
887+
</section>
888+
879889
<section>
880890
<h2 id="the-problem-to-solve">The problem to solve </h2>
881891
<p>Using our definition of the kernel We can rewrite again the Lagrangian</p>
@@ -1379,7 +1389,7 @@ <h2 id="quantum-kernels">Quantum kernels </h2>
13791389
(and theoretical definitions) use the squared overlap. In any case,
13801390
the kernel measures similarity: if \( \vert \phi(\boldsymbol{x})\rangle \) and
13811391
\( \vert \phi(\boldsymbol{x}&#8217;)\rangle \) are close in Hilbert space,
1382-
\( k(\boldsymbol{x},\boldsymbol{x}&#8217;) \) is large.
1392+
\( K(\boldsymbol{x},\boldsymbol{x}&#8217;) \) is large.
13831393
</p>
13841394
</section>
13851395

@@ -1841,7 +1851,8 @@ <h2 id="and-nisq-quantum-kernels">And NISQ Quantum Kernels </h2>
18411851
possible quality or feature-based advantage: the quantum feature map
18421852
might separate data better than any known classical kernel. This
18431853
approach has been demonstrated on small datasets (e.g. Iris) and
1844-
studied theoretically. For example, Havlicek et al. showed on a toy
1854+
studied theoretically. For example, Havlicek <em>et al.</em>, see <a href="https://www.nature.com/articles/s41586-019-0980-2" target="_blank"><tt>https://www.nature.com/articles/s41586-019-0980-2</tt></a>
1855+
showed on a toy
18451856
problem that a quantum kernel can correctly classify points that a
18461857
simple classical kernel cannot. However, other studies have found
18471858
that for random data classical kernels often suffice, so the advantage
@@ -2177,8 +2188,6 @@ <h2 id="computing-quantum-kernel-matrices">Computing Quantum Kernel Matrices </h
21772188
</div>
21782189
</div>
21792190
</div>
2180-
2181-
<p>This is equivalent.</p>
21822191
</section>
21832192

21842193
<section>

doc/pub/week14/html/week14-solarized.html

Lines changed: 16 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -120,6 +120,10 @@
120120
None,
121121
'kernels-and-non-linearity'),
122122
('Kernel trick', 2, None, 'kernel-trick'),
123+
('Visualization of the Kernel trick',
124+
2,
125+
None,
126+
'visualization-of-the-kernel-trick'),
123127
('The problem to solve', 2, None, 'the-problem-to-solve'),
124128
('Convex optimization', 2, None, 'convex-optimization'),
125129
('Different kernels', 2, None, 'different-kernels'),
@@ -888,6 +892,15 @@ <h2 id="kernel-trick">Kernel trick </h2>
888892
\( \phi(\boldsymbol{x}_i)^T\phi(\boldsymbol{x}_j) \) during the SVM calculations.
889893
</p>
890894

895+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
896+
<h2 id="visualization-of-the-kernel-trick">Visualization of the Kernel trick </h2>
897+
898+
<br/><br/>
899+
<center>
900+
<p><img src="figures/kerneltrick.png" width="900" align="bottom"></p>
901+
</center>
902+
<br/><br/>
903+
891904
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
892905
<h2 id="the-problem-to-solve">The problem to solve </h2>
893906
<p>Using our definition of the kernel We can rewrite again the Lagrangian</p>
@@ -1370,7 +1383,7 @@ <h2 id="quantum-kernels">Quantum kernels </h2>
13701383
(and theoretical definitions) use the squared overlap. In any case,
13711384
the kernel measures similarity: if \( \vert \phi(\boldsymbol{x})\rangle \) and
13721385
\( \vert \phi(\boldsymbol{x}&#8217;)\rangle \) are close in Hilbert space,
1373-
\( k(\boldsymbol{x},\boldsymbol{x}&#8217;) \) is large.
1386+
\( K(\boldsymbol{x},\boldsymbol{x}&#8217;) \) is large.
13741387
</p>
13751388

13761389
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
@@ -1794,7 +1807,8 @@ <h2 id="and-nisq-quantum-kernels">And NISQ Quantum Kernels </h2>
17941807
possible quality or feature-based advantage: the quantum feature map
17951808
might separate data better than any known classical kernel. This
17961809
approach has been demonstrated on small datasets (e.g. Iris) and
1797-
studied theoretically. For example, Havlicek et al. showed on a toy
1810+
studied theoretically. For example, Havlicek <em>et al.</em>, see <a href="https://www.nature.com/articles/s41586-019-0980-2" target="_blank"><tt>https://www.nature.com/articles/s41586-019-0980-2</tt></a>
1811+
showed on a toy
17981812
problem that a quantum kernel can correctly classify points that a
17991813
simple classical kernel cannot. However, other studies have found
18001814
that for random data classical kernels often suffice, so the advantage
@@ -2122,7 +2136,6 @@ <h2 id="computing-quantum-kernel-matrices">Computing Quantum Kernel Matrices </h
21222136
</div>
21232137
</div>
21242138

2125-
<p>This is equivalent.</p>
21262139

21272140
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
21282141
<h2 id="training-svm-with-precomputed-quantum-kernels">Training SVM with Precomputed Quantum Kernels </h2>

doc/pub/week14/html/week14.html

Lines changed: 16 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -197,6 +197,10 @@
197197
None,
198198
'kernels-and-non-linearity'),
199199
('Kernel trick', 2, None, 'kernel-trick'),
200+
('Visualization of the Kernel trick',
201+
2,
202+
None,
203+
'visualization-of-the-kernel-trick'),
200204
('The problem to solve', 2, None, 'the-problem-to-solve'),
201205
('Convex optimization', 2, None, 'convex-optimization'),
202206
('Different kernels', 2, None, 'different-kernels'),
@@ -965,6 +969,15 @@ <h2 id="kernel-trick">Kernel trick </h2>
965969
\( \phi(\boldsymbol{x}_i)^T\phi(\boldsymbol{x}_j) \) during the SVM calculations.
966970
</p>
967971

972+
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
973+
<h2 id="visualization-of-the-kernel-trick">Visualization of the Kernel trick </h2>
974+
975+
<br/><br/>
976+
<center>
977+
<p><img src="figures/kerneltrick.png" width="900" align="bottom"></p>
978+
</center>
979+
<br/><br/>
980+
968981
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
969982
<h2 id="the-problem-to-solve">The problem to solve </h2>
970983
<p>Using our definition of the kernel We can rewrite again the Lagrangian</p>
@@ -1447,7 +1460,7 @@ <h2 id="quantum-kernels">Quantum kernels </h2>
14471460
(and theoretical definitions) use the squared overlap. In any case,
14481461
the kernel measures similarity: if \( \vert \phi(\boldsymbol{x})\rangle \) and
14491462
\( \vert \phi(\boldsymbol{x}&#8217;)\rangle \) are close in Hilbert space,
1450-
\( k(\boldsymbol{x},\boldsymbol{x}&#8217;) \) is large.
1463+
\( K(\boldsymbol{x},\boldsymbol{x}&#8217;) \) is large.
14511464
</p>
14521465

14531466
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
@@ -1871,7 +1884,8 @@ <h2 id="and-nisq-quantum-kernels">And NISQ Quantum Kernels </h2>
18711884
possible quality or feature-based advantage: the quantum feature map
18721885
might separate data better than any known classical kernel. This
18731886
approach has been demonstrated on small datasets (e.g. Iris) and
1874-
studied theoretically. For example, Havlicek et al. showed on a toy
1887+
studied theoretically. For example, Havlicek <em>et al.</em>, see <a href="https://www.nature.com/articles/s41586-019-0980-2" target="_blank"><tt>https://www.nature.com/articles/s41586-019-0980-2</tt></a>
1888+
showed on a toy
18751889
problem that a quantum kernel can correctly classify points that a
18761890
simple classical kernel cannot. However, other studies have found
18771891
that for random data classical kernels often suffice, so the advantage
@@ -2199,7 +2213,6 @@ <h2 id="computing-quantum-kernel-matrices">Computing Quantum Kernel Matrices </h
21992213
</div>
22002214
</div>
22012215

2202-
<p>This is equivalent.</p>
22032216

22042217
<!-- !split --><br><br><br><br><br><br><br><br><br><br>
22052218
<h2 id="training-svm-with-precomputed-quantum-kernels">Training SVM with Precomputed Quantum Kernels </h2>
765 KB
Binary file not shown.

0 commit comments

Comments
 (0)