Skip to content

Commit bfb642f

Browse files
committed
Update README.md
1 parent cedd661 commit bfb642f

File tree

1 file changed

+39
-48
lines changed

1 file changed

+39
-48
lines changed

README.md

Lines changed: 39 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -67,130 +67,121 @@ in addition to the lectures, we have often followed five main paths:
6767

6868

6969

70-
## January 20-24: Presentation of couse, review of neural networks and deep Learning and discussion of possible projects
70+
## January 19-23: Presentation of couse, review of neural networks and deep Learning and discussion of possible projects
7171

7272
- Presentation of course and overview
7373
- Discussion of possible projects
7474
- Deep learning, neural networks, basic equations
7575
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week1/ipynb/week1.ipynb
7676
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka chapter 11
77-
- Video of lecture at https://youtu.be/SY57dC46L9o
77+
- Video of lecture at https://youtu.be/
7878

79-
## January 27-31
79+
## January 26-30
8080
- Mathematics of deep learning, basics of neural networks and writing a neural network code
8181
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week2/ipynb/week2.ipynb
8282
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka et al chapter 11. For Pytorch see Raschka et al chapter 12.
83-
- Link to video of lecture at https://youtu.be/9GmKWT2EFwQ
84-
- Link to whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesJanuary30.pdf
83+
- Link to video of lecture at https://youtu.be/
8584

8685

87-
## February 3-7
86+
87+
## February 2-6
8888
- From neural networks to convolutional neural networks
8989
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week3/ipynb/week3.ipynb
9090
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka et al chapter 11. For Pytorch see Raschka et al chapter 12.
9191

92-
## February 10-14
92+
## February 9-13
9393
- Mathematics of convolutional neural networks
9494
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week4/ipynb/week4.ipynb
9595
- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
96-
- Video of lecture at https://youtu.be/WsvsCe1-IP4
97-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary13.pdf
96+
- Video of lecture at https://youtu.be/
97+
9898

9999

100-
## February 17-21
100+
## February 16-20
101101
- Mathematics of CNNs and discussion of codes
102102
- Recurrent neural networks (RNNs)
103103
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week5/ipynb/week5.ipynb
104104
- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
105-
- Video of lecture at https://youtu.be/DhuQ1H9RwfQ
105+
- Video of lecture at https://youtu.be/
106106

107-
## February 24-28
107+
## February 23-27
108108
- Mathematics of recurrent neural networks
109109
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week6/ipynb/week6.ipynb
110110
- Recommended reading Goodfellow et al chapters 9 and 10 and Raschka et al chapters 14 and 15
111-
- Video of lecture at https://youtu.be/OCJi2Kgw8Rw
112-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary27.pdf
111+
- Video of lecture at https://youtu.be/
112+
113113

114-
## March 3-7
114+
## March 2-6
115115
- Recurrent neural networks, mathematics and codes
116116
- Applications to differential equations
117117
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week7/ipynb/week7.ipynb
118118
- Recommended reading Goodfellow et al chapters 10 and Raschka et al chapter 15 and 18
119-
- Video of lecture at https://youtu.be/MeYh5rGIRBM
120-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch6.pdf
119+
- Video of lecture at https://youtu.be/
121120

122-
## March 10-14
121+
## March 9-13
123122
- Long short term memory and RNNs
124123
- Autoencoders and PCA
125124
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week8/ipynb/week8.ipynb
126125
- Recommended reading Goodfellow et al chapter 14 for Autoenconders and Rashcka et al chapter 18
127-
- Video of lecture at https://youtu.be/CvXcwXk5JRc
128-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch13.pdf
126+
- Video of lecture at https://youtu.be/
129127

130128

131-
## March 17-21: Autoencoders
129+
## March 16-20: Autoencoders
132130
- Autoencoders and links with Principal Component Analysis. Discussion of AE implementations
133131
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week9/ipynb/week9.ipynb- Reading recommendation: Goodfellow et al chapter 14
134-
- Video of Lecture at https://youtu.be/5Blyxyvfc9U
135-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch20.pdf
132+
- Video of Lecture at https://youtu.be/
136133

137134

138-
## March 24-28: Generative models
135+
## March 23-27: Generative models
139136
- Monte Carlo methods and structured probabilistic models for deep learning
140137
- Partition function and Boltzmann machines
141138
- Boltzmann machines
142139
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week10/ipynb/week10.ipynb
143140
- Reading recommendation: Goodfellow et al chapters 16-18
144-
- Video of lecture at https://youtu.be/ez9SrGOTOjA
145-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/Handw\
146-
rittenNotes/2025/NotesMarch27.pdf
141+
- Video of lecture at https://youtu.be/
147142

148-
## March 31-April 4: Deep generative models, Boltzmann machines
143+
## March 30- April 3: Public holiday, no lectures
144+
145+
## April 6-10: Deep generative models, Boltzmann machines
149146
- Restricted Boltzmann machines
150147
- Reminder on Markov Chain Monte Carlo and Gibbs sampling
151148
- Discussions of various Boltzmann machines
152149
- Reading recommendation: Goodfellow et al chapters 16, 17 and 18
153150
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week11/ipynb/week11.ipynb
154151

155152

156-
## April 7-11: Deep generative models
153+
## April 13-17: Deep generative models
157154
- Reminder from previous week on Energy-based models and Langevin sampling
158155
- Variational Autoencoders
159156
- Reading recommendation: Goodfellow et al chapters 18.1-18.2, 20.1-20-7; To create Boltzmann machine using Keras, see Babcock and Bali chapter 4
160157
- See also Foster, chapter 7 on energy-based models
161-
- Video of lecture at https://youtu.be/Mm9Xasy8qNw
162-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril10.pdf
163-
164-
## April 14-18: Public holiday, no lectures
158+
- Video of lecture at https://youtu.be/
165159

166-
## April 21-25: Deep generative models
160+
## April 20-24: Deep generative models
167161

168162
- Variational autoencoders
169163
- Reading recommendation: Goodfellow et al chapter 20.10-20.14
170164
- See also Foster, chapter 7 on energy-based models
171165
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week13/ipynb/week13.ipynb
172-
- Video of lecture at https://youtu.be/t5zb7RhBUwA
173-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril24.pdf
166+
- Video of lecture at https://youtu.be/
174167

175-
## April 28 - May 2: May 1 is a public holiday, no lecture:
176168

177-
## May 5-9: Deep generative models
169+
## April 27 - May 1: Deep generative models
178170
- Diffusion models
179-
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb
180-
- Video of lecture at https://youtu.be/ibJ8HksRzv4
181-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay8.pdf
171+
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week14/ipynb/week14.ipynb
172+
- Video of lecture at https://youtu.be/
182173

183174

184-
## May 12-16: Deep generative models
175+
## May 4-8: Deep generative models
185176
- Diffusion models
186177
- GANs
187-
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week16.ipynb
188-
- Video of lecture at https://youtu.be/-RppFI0QX7k
189-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay15.pdf
178+
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb
179+
- Video of lecture at https://youtu.be/
180+
181+
182+
## May 11-15: Discussion of projects and summary of course
183+
- Summary slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week16/ipynb/week16.ipynb
190184

191-
## May 19-23: Discussion of projects and summary of course
192-
- Summary slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week17.ipynb
193-
- Lab only
194185

195186
## Recommended textbooks:
196187

0 commit comments

Comments
 (0)