You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+39-48Lines changed: 39 additions & 48 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -67,130 +67,121 @@ in addition to the lectures, we have often followed five main paths:
67
67
68
68
69
69
70
-
## January 20-24: Presentation of couse, review of neural networks and deep Learning and discussion of possible projects
70
+
## January 19-23: Presentation of couse, review of neural networks and deep Learning and discussion of possible projects
71
71
72
72
- Presentation of course and overview
73
73
- Discussion of possible projects
74
74
- Deep learning, neural networks, basic equations
75
75
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week1/ipynb/week1.ipynb
76
76
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka chapter 11
77
-
- Video of lecture at https://youtu.be/SY57dC46L9o
77
+
- Video of lecture at https://youtu.be/
78
78
79
-
## January 27-31
79
+
## January 26-30
80
80
- Mathematics of deep learning, basics of neural networks and writing a neural network code
81
81
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week2/ipynb/week2.ipynb
82
82
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka et al chapter 11. For Pytorch see Raschka et al chapter 12.
83
-
- Link to video of lecture at https://youtu.be/9GmKWT2EFwQ
84
-
- Link to whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesJanuary30.pdf
83
+
- Link to video of lecture at https://youtu.be/
85
84
86
85
87
-
## February 3-7
86
+
87
+
## February 2-6
88
88
- From neural networks to convolutional neural networks
89
89
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week3/ipynb/week3.ipynb
90
90
- Recommended reading Goodfellow et al chapters 6 and 7 and Raschka et al chapter 11. For Pytorch see Raschka et al chapter 12.
91
91
92
-
## February 10-14
92
+
## February 9-13
93
93
- Mathematics of convolutional neural networks
94
94
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week4/ipynb/week4.ipynb
95
95
- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
96
-
- Video of lecture at https://youtu.be/WsvsCe1-IP4
97
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary13.pdf
96
+
- Video of lecture at https://youtu.be/
97
+
98
98
99
99
100
-
## February 17-21
100
+
## February 16-20
101
101
- Mathematics of CNNs and discussion of codes
102
102
- Recurrent neural networks (RNNs)
103
103
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week5/ipynb/week5.ipynb
104
104
- Recommended reading Goodfellow et al chapter 9. Raschka et al chapter 13
105
-
- Video of lecture at https://youtu.be/DhuQ1H9RwfQ
105
+
- Video of lecture at https://youtu.be/
106
106
107
-
## February 24-28
107
+
## February 23-27
108
108
- Mathematics of recurrent neural networks
109
109
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week6/ipynb/week6.ipynb
110
110
- Recommended reading Goodfellow et al chapters 9 and 10 and Raschka et al chapters 14 and 15
111
-
- Video of lecture at https://youtu.be/OCJi2Kgw8Rw
112
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesFebruary27.pdf
111
+
- Video of lecture at https://youtu.be/
112
+
113
113
114
-
## March 3-7
114
+
## March 2-6
115
115
- Recurrent neural networks, mathematics and codes
116
116
- Applications to differential equations
117
117
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week7/ipynb/week7.ipynb
118
118
- Recommended reading Goodfellow et al chapters 10 and Raschka et al chapter 15 and 18
119
-
- Video of lecture at https://youtu.be/MeYh5rGIRBM
120
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch6.pdf
119
+
- Video of lecture at https://youtu.be/
121
120
122
-
## March 10-14
121
+
## March 9-13
123
122
- Long short term memory and RNNs
124
123
- Autoencoders and PCA
125
124
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week8/ipynb/week8.ipynb
126
125
- Recommended reading Goodfellow et al chapter 14 for Autoenconders and Rashcka et al chapter 18
127
-
- Video of lecture at https://youtu.be/CvXcwXk5JRc
128
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch13.pdf
126
+
- Video of lecture at https://youtu.be/
129
127
130
128
131
-
## March 17-21: Autoencoders
129
+
## March 16-20: Autoencoders
132
130
- Autoencoders and links with Principal Component Analysis. Discussion of AE implementations
133
131
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week9/ipynb/week9.ipynb- Reading recommendation: Goodfellow et al chapter 14
134
-
- Video of Lecture at https://youtu.be/5Blyxyvfc9U
135
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMarch20.pdf
132
+
- Video of Lecture at https://youtu.be/
136
133
137
134
138
-
## March 24-28: Generative models
135
+
## March 23-27: Generative models
139
136
- Monte Carlo methods and structured probabilistic models for deep learning
140
137
- Partition function and Boltzmann machines
141
138
- Boltzmann machines
142
139
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week10/ipynb/week10.ipynb
143
140
- Reading recommendation: Goodfellow et al chapters 16-18
144
-
- Video of lecture at https://youtu.be/ez9SrGOTOjA
145
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/Handw\
146
-
rittenNotes/2025/NotesMarch27.pdf
141
+
- Video of lecture at https://youtu.be/
147
142
148
-
## March 31-April 4: Deep generative models, Boltzmann machines
143
+
## March 30- April 3: Public holiday, no lectures
144
+
145
+
## April 6-10: Deep generative models, Boltzmann machines
149
146
- Restricted Boltzmann machines
150
147
- Reminder on Markov Chain Monte Carlo and Gibbs sampling
151
148
- Discussions of various Boltzmann machines
152
149
- Reading recommendation: Goodfellow et al chapters 16, 17 and 18
153
150
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week11/ipynb/week11.ipynb
154
151
155
152
156
-
## April 7-11: Deep generative models
153
+
## April 13-17: Deep generative models
157
154
- Reminder from previous week on Energy-based models and Langevin sampling
158
155
- Variational Autoencoders
159
156
- Reading recommendation: Goodfellow et al chapters 18.1-18.2, 20.1-20-7; To create Boltzmann machine using Keras, see Babcock and Bali chapter 4
160
157
- See also Foster, chapter 7 on energy-based models
161
-
- Video of lecture at https://youtu.be/Mm9Xasy8qNw
162
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril10.pdf
163
-
164
-
## April 14-18: Public holiday, no lectures
158
+
- Video of lecture at https://youtu.be/
165
159
166
-
## April 21-25: Deep generative models
160
+
## April 20-24: Deep generative models
167
161
168
162
- Variational autoencoders
169
163
- Reading recommendation: Goodfellow et al chapter 20.10-20.14
170
164
- See also Foster, chapter 7 on energy-based models
171
165
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week13/ipynb/week13.ipynb
172
-
- Video of lecture at https://youtu.be/t5zb7RhBUwA
173
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesApril24.pdf
166
+
- Video of lecture at https://youtu.be/
174
167
175
-
## April 28 - May 2: May 1 is a public holiday, no lecture:
176
168
177
-
## May 5-9: Deep generative models
169
+
## April 27 - May 1: Deep generative models
178
170
- Diffusion models
179
-
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb
180
-
- Video of lecture at https://youtu.be/ibJ8HksRzv4
181
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay8.pdf
171
+
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week14/ipynb/week14.ipynb
172
+
- Video of lecture at https://youtu.be/
182
173
183
174
184
-
## May 12-16: Deep generative models
175
+
## May 4-8: Deep generative models
185
176
- Diffusion models
186
177
- GANs
187
-
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week16.ipynb
188
-
- Video of lecture at https://youtu.be/-RppFI0QX7k
189
-
- Whiteboard notes at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2025/NotesMay15.pdf
178
+
- Slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week15.ipynb
179
+
- Video of lecture at https://youtu.be/
180
+
181
+
182
+
## May 11-15: Discussion of projects and summary of course
183
+
- Summary slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week16/ipynb/week16.ipynb
190
184
191
-
## May 19-23: Discussion of projects and summary of course
192
-
- Summary slides at https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/pub/week15/ipynb/week17.ipynb
0 commit comments