diff --git a/ALGORITHM-README-TEMPLATE.md b/ALGORITHM-README-TEMPLATE.md new file mode 100644 index 00000000..0abf5f66 --- /dev/null +++ b/ALGORITHM-README-TEMPLATE.md @@ -0,0 +1,119 @@ + + + + + + +# Algorithms Title + + + + + + + +## Objectives + + +## Pre-requisites + + +- Linear Algebra Basics +- Probability and Statistics +- Libraries: NumPy, TensorFlow, PyTorch (as applicable) + +??? quote "LIBRARIES USED" + + - pandas + - numpy + - scikit-learn + - matplotlib + - seaborn + - tensorflow + - keras + +## Input + + +Example: +- A dataset with features (X) and labels (y) for supervised learning. +- Text data for NLP tasks. + +## Output + + +Example: +- Predicted labels for a classification task. +- Clusters for an unsupervised learning task. + +## Algorithm Architecture + + +Example: +- Input Layer +- Hidden Layers (Dense/Recurrent/Convolutional) +- Output Layer + +## Training Process + + +Example: +- Loss Function: Mean Squared Error (MSE) +- Optimizer: Adam, Learning Rate = 0.001 +- Epochs: 50 +- Batch Size: 32 + +## Evaluation Metrics + + +Example: +- Accuracy +- Precision, Recall, F1-Score +- Mean Absolute Error (MAE) + +## Code Implementation + + + +## Scratch Code Explanation + + +Example: +- Step 1: Initialize the parameters. +- Step 2: Preprocess the input data. +- Step 3: Perform calculations iteratively. +- Step 4: Return the result. + +## Examples + + +Example: +```python +# Example usage +input_data = np.array([...]) +result = example_algorithm(input_data) +print(result) +``` + + +## APPLICATIONS + + +=== "Application 1" + + **Headline** + + - Explain your application + +=== "Application 2" + + **Headline** + + - Explain your application + + diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 1418d6a7..9275ff81 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -42,10 +42,11 @@ We want your work to be readable by others; therefore, we encourage you to note 1. File names should be in `kebab-case` letters (e.g., `music-genre-classification-model`, `insurance-cross-sell-prediction`). 2. Follow the [***PROJECT README TEMPLATE***](./PROJECT-README-TEMPLATE.md) for refrence. -3. Do not upload images or video files directly. Use a GitHub raw URL in the documentation. -4. Upload your notebook to Kaggle, make it public, and share the Kaggle link only. Other links are not accepted. -5. Limit commits to 3-4 unless given permission by project Admins or Mentors. -6. Keep commit messages clear and relevant; avoid unnecessary details. +3. Follow the [***ALGORITHMS README TEMPLATE***](./ALGORITHM-README-TEMPLATE.md) for reference. +4. Do not upload images or video files directly. Use a GitHub raw URL in the documentation. +5. Upload your notebook to Kaggle, make it public, and share the Kaggle link only. Other links are not accepted. +6. Limit commits to 3-4 unless given permission by project Admins or Mentors. +7. Keep commit messages clear and relevant; avoid unnecessary details. ### Pull Requests Review Criteria 🧲