From 9fe2bf7f2727b5e74b0d66b7b65225fb37a58b4d Mon Sep 17 00:00:00 2001 From: asnegur Date: Tue, 25 Feb 2025 12:15:58 +0200 Subject: [PATCH 1/4] Change MAX_EVENT_SIZE_BYTES (cherry picked from commit 3e3d6e05ba1cc299185d37e04159cbf62e534520) --- langfuse/_task_manager/ingestion_consumer.py | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/langfuse/_task_manager/ingestion_consumer.py b/langfuse/_task_manager/ingestion_consumer.py index 16d426de0..f49893d25 100644 --- a/langfuse/_task_manager/ingestion_consumer.py +++ b/langfuse/_task_manager/ingestion_consumer.py @@ -21,8 +21,8 @@ from .media_manager import MediaManager -MAX_EVENT_SIZE_BYTES = int(os.environ.get("LANGFUSE_MAX_EVENT_SIZE_BYTES", 1_000_000)) -MAX_BATCH_SIZE_BYTES = int(os.environ.get("LANGFUSE_MAX_BATCH_SIZE_BYTES", 2_500_000)) +MAX_EVENT_SIZE_BYTES = int(os.environ.get("LANGFUSE_MAX_EVENT_SIZE_BYTES", 10_000_000)) +MAX_BATCH_SIZE_BYTES = int(os.environ.get("LANGFUSE_MAX_BATCH_SIZE_BYTES", 20_500_000)) class IngestionMetadata(pydantic.BaseModel): @@ -142,6 +142,7 @@ def _next(self): total_size += item_size if total_size >= MAX_BATCH_SIZE_BYTES: self._log.debug("hit batch size limit (size: %d)", total_size) + raise RuntimeError(f"hit batch size limit (size: {total_size})") break except Empty: @@ -176,6 +177,9 @@ def _truncate_item_in_place( "Item exceeds size limit (size: %s), dropping input / output / metadata of item until it fits.", item_size, ) + raise RuntimeError( + f"Item exceeds size limit (size: {item_size}), dropping input / output / metadata of item until it fits." + ) if "body" in event: drop_candidates = ["input", "output", "metadata"] From 43f2070f61795dda58286a443cf95bd9790c6a37 Mon Sep 17 00:00:00 2001 From: bbs-md Date: Thu, 5 Dec 2024 18:38:12 +0200 Subject: [PATCH 2/4] Delete examples (cherry picked from commit ceef7d7207343fe5571e271e71293a56399985f5) --- examples/django_example/README.md | 23 - examples/django_example/db.sqlite3 | Bin 131072 -> 0 bytes .../django_example/django_example/__init__.py | 0 .../django_example/django_example/asgi.py | 15 - .../django_example/django_example/settings.py | 123 ---- .../django_example/django_example/urls.py | 24 - .../django_example/django_example/wsgi.py | 15 - examples/django_example/manage.py | 23 - examples/django_example/myapp/__init__.py | 20 - examples/django_example/myapp/apps.py | 6 - .../myapp/langfuse_integration.py | 54 -- .../myapp/migrations/__init__.py | 0 examples/django_example/myapp/views.py | 14 - examples/django_example/poetry.lock | 520 ----------------- examples/django_example/pyproject.toml | 16 - examples/fastapi_example/README.md | 23 - .../fastapi_example/__init__.py | 0 .../fastapi_example/fastapi_example/main.py | 89 --- examples/fastapi_example/poetry.lock | 526 ------------------ examples/fastapi_example/pyproject.toml | 19 - langfuse/_task_manager/ingestion_consumer.py | 4 +- 21 files changed, 2 insertions(+), 1512 deletions(-) delete mode 100644 examples/django_example/README.md delete mode 100644 examples/django_example/db.sqlite3 delete mode 100644 examples/django_example/django_example/__init__.py delete mode 100644 examples/django_example/django_example/asgi.py delete mode 100644 examples/django_example/django_example/settings.py delete mode 100644 examples/django_example/django_example/urls.py delete mode 100644 examples/django_example/django_example/wsgi.py delete mode 100755 examples/django_example/manage.py delete mode 100644 examples/django_example/myapp/__init__.py delete mode 100644 examples/django_example/myapp/apps.py delete mode 100644 examples/django_example/myapp/langfuse_integration.py delete mode 100644 examples/django_example/myapp/migrations/__init__.py delete mode 100644 examples/django_example/myapp/views.py delete mode 100644 examples/fastapi_example/README.md delete mode 100644 examples/fastapi_example/fastapi_example/__init__.py delete mode 100644 examples/fastapi_example/fastapi_example/main.py delete mode 100644 examples/fastapi_example/poetry.lock delete mode 100644 examples/fastapi_example/pyproject.toml diff --git a/examples/django_example/README.md b/examples/django_example/README.md deleted file mode 100644 index 1a0853bcb..000000000 --- a/examples/django_example/README.md +++ /dev/null @@ -1,23 +0,0 @@ -# django_example - -This Django application demonstrates integrating Langfuse for event tracing and response generation within a Django framework. - -1. **Shutdown Behavior**: Implements shutdown logic using Django's framework. Shutdown, located in `myapp/__init__.py`, flushes all events to Langfuse to ensure data integrity. - -2. **Endpoints**: -- `"/"`: Returns a JSON message to demonstrate Langfuse integration. -- `"/campaign/"`: Accepts a `prompt` and employs Langfuse for event tracing. (Note: OpenAI is referenced for context but not used in this example). - -3. **Integration**: -- Langfuse: Utilized for event tracing with `trace`, `score`, `generation`, and `span` operations. (Note that OpenAI is not actually used here to generate an answer to the prompt. This example is just to show how to use FastAPI with the Langfuse SDK) - -4. **Dependencies**: -- Django: The primary framework for building the application. -- Langfuse: Library for event tracing and management. - -5. **Usage**:
-- Preparation: Ensure `langfuse` is installed and configured in the `myapp/langfuse_integration.py` file.
-- Starting the Server: Navigate to the root directory of the project `langfuse-python/examples/django_examples`. Run `poetry run python manage.py runserver 0.0.0.0:8000` to start the server. -- Accessing Endpoints: The application's endpoints can be accessed at `http://localhost:8000`. - -Refer to Django and Langfuse documentation for more detailed information. diff --git a/examples/django_example/db.sqlite3 b/examples/django_example/db.sqlite3 deleted file mode 100644 index 955503bb2259b859256b7d581cb823f35f0e75de..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 131072 zcmeI5TWlNIdB-{AkQ617M^}#;TNXvHcFoFK@lMg(w5#j{P720w4eaAOHd&00JNY z0w4eaAOHeCc>;4YA#yrB@rH|im3^9(*i!iK!oL=NCG?}v7eeEOG;cY?nVoSOLh z#3M4o2LwO>1V8`;KmY_l00cmwhd^rD>snaeXzI;oxn66=zaFOL)&lNBKxGORa$yO-EY!nr`%|^)S6b+)v9)1 zt?0Gg)~&&wl8N>8mnX^7MblG4-QO!|EnVGf)bBq~_w+`!+|f1ALn4<-CN41Y@Ve{Qa&p6P63^Q!RMAGPPduN>=RXi4N7qb8>vl&R&nR5t>0~5Hzvs0mgy|3HuO9D z<%X^n>$R3%YqcKi=}nbdJ~`M$h8pUXadPpR=^|sVmjG0$@0M$7ZNDY=X2feD5D@Sy>G{MN_FZs!d*?Hq;=e7FU zD7_}Vp2%jBmwaB=^2H51Moy9VR_k}Wcva3`Ux-DS;0NfB*=900@8p2!H?xfB*=900@AFanPd$YFU-5h)Qq@XW|_OCo7Kis7D;m4$!^ z378K=@aO;MgTLfr|HS^3{VFT4^DG$t=kRC4pAI*|+u;|()1m(e{Y~hPLytn&LuZ2j z6Z}^2kAe@W06ri90w4eaAOHd&00JNY0wCZZ5S{nBq~%rL-Lig9HEwDyXtfAWM~w9I z3faUGzLH+i>173*RcBAv?nK9~c#GCNd+a)UOuNV&*_~PO@n`yN&M0YGtjvhb0@*46S=7z+c0`v|DFJS0&6fm^f3&iOC4{0Ui<$@j7T(sTv z6usafExsTN<@~m#ZlS`uyX{J`cAfK+@mts%n&#Yu#L`|Dx6SA}_^+jD~=Vd7&4T!JIbTSOLw#dlzoGh(K z&Uncblchz;3XMz(0rp@B>+CTc@`y$_EK3VgH`o!Hl%*xf7T*X80zCnZiOw#=iHJyy ziz8d%ih$7P3{Z?Iva}}k2P6EQ{f0v;a^MqG9RUXKv>bRr>WL=EvvOcXa)b^%VyEHL zy#04i%7JBi0Kf_e@b!QCNB{8w0T2KI5C8!X009sH0T2KI5C8!XIK~9{`akafk8uN| zY9IgtAOHd&00JNY0w4eaAOHd&Km@Sf ze;cEQAOHd&00JNY0w4eaAOHd&00JO@=l{_MKmY_l00ck)1V8`;KmY_l00cnb_!GeT z|M72Q)DQ$f00ck)1V8`;KmY_l00ck)1aSY4J^%tB00JNY0w4eaAOHd&00JNY0>_^K zfBt`-?Yr3ju^+PkWZz@&vVUd&$iB_K&c4R}oPCLXp8W~?L-u>@9rhXaN%rgPYFAb|D%;Z22H5C8!X z009sH0T2KI5C8!X009s<4g~P;{~d=`L>)i?1V8`;KmY_l00ck)1V8`;Kwvll-2V^f zgIo{*0T2KI5C8!X009sH0T2KI5I7D5aQ}ZCS`l>s0T2KI5C8!X009sH0T2KI5CDPU z1aSX9oDXtA00ck)1V8`;KmY_l00ck)1VG?85WxNaacD)<0R%t*1V8`;KmY_l00ck) z1V8`;h7$<+|JyY#f6B$43;%84+rF=a?giiW&3fOGKQ-|~^FQ~G+*hREbbZ71euuA# z@B1D(b|DD@AOHeC7J>H9P5YG(uS)G^xmMEeYx}KR>V8visJo5&{$8{5yPmqe57@ z6g?M-3VEa_8f%}Q@+-S}sjXQx=;ZF{jcU2sEZ1vI)%wmWv7Rnwiut52l=T@;8?~^@ z?=w2YqfLBY5nhEJ9VC8b(yx4o#J@gFe8&^%E+mriVqqsgSohROy8E0RCD|+xjUB`% z{L1R8^l+x76)GKiw$9>g=b)kI`o=4lHwU*UHDIJ%Yw5dsBeH$vdSv^?<;#&bu5P`) zarI{8wauH6jT_gmY;BXH*EhGXQ@fj8pug1B%@1r|-Q2#gdChhxj+}Rr$g4c}st~fZ zy>)$Sl-ESp)=Dku`0#q-Vxke1x6e&)Y{*Cs$2ZMifd2K z_?0VkhD}&gylv9#o(!{EBB__w3(i?|cEGGYth{YHx0!MJ=G+-;-)3V<+mn|L&RClI zx}J5;w;GY3JmbYuDw!$7tt)`OqLYT^0oMV2wj&+JR;fM*ylS1D)Fu1+XzbvFLBF!G zAw7J_8li%O*jQETjM9NQp#dXxpy6YUR^e&1(Zo$h8%KQ{p2S#v!|hX6R-~H(Z1YZ~ z+|t#ierI2=6?I3_(}U2FdA6oi^>b7**1jqEm9;hLKodSox3$`CU9FaP8(NEB$Mx-S z_xO$W_u7Q8a;=BwQqf9Tr>U`|we(iGs&|XVu>SvE zr%u>|00@8p2!H?xfB*=900@8p2!Oz|MtE zoA!N|o&%`5|IBmK^JVw1NN>9@kl9o8@m!R?_*in8QJ2orxVf}#>6-vjgkdb{ki^4~yJ=I!^Mq2v)RyRUKxptWYLP#&geae-X zmsf8DpwP|>50UPK4o+9u)hI z$(?jAtEW4QFP2@{Xi@u<09NjyUTmusmNg#_j>FPSbZyD6JXnzqn6(gN73n)bv0l=7 zt<`u!E2MH6&02%8O8E@Y0~TK_qY+(?ToY;(Qye`fupII8g@K2XHBziYi}7M5y#q## zmHSw;h!b=F$g?kl8q=h`ka5(b9~{xqp!MHzh^ZN1py;EW5b&PmbO z-O%@F5!F1aCLQCIpOfk}b*G~3MkCFtR;keQNs;|pv%E{EqwZNWa^ceEh1d9Cu-pIa z`y=rfp9*i$x}~mG=|WfAr4yXA=`w_aAF9zzPCq1Le ze09@)*HJ_RF zD{sHHT>3YyCr&mUu{d#93mxXbskdXt`;+)4x)Rp^kGjJ`J_vvS z2!H?xfB*=900@8p2!H?xJo^N2|Nrc_A!+~uAOHd&00JNY0w4eaAOHd&00Ku5!2SPG zgpdycAOHd&00JNY0w4eaAOHd&00PfG0o?yT`)!CCfB*=900@8p2!H?xfB*=900@A< zQ3P=Re-t6)g8&GC00@8p2!H?xfB*=900@A`8@7Z6nFS2(ife#3P z00@8p2!H?xfB*=900@8p2!Oy7A~55VT?;3TUt((-e@}X4*YX+TmpSfB*=900@8p2!H?xfB*=900=x41pXh4diUi3 diff --git a/examples/django_example/django_example/__init__.py b/examples/django_example/django_example/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/examples/django_example/django_example/asgi.py b/examples/django_example/django_example/asgi.py deleted file mode 100644 index d056699ed..000000000 --- a/examples/django_example/django_example/asgi.py +++ /dev/null @@ -1,15 +0,0 @@ -"""ASGI config for django_example project. - -It exposes the ASGI callable as a module-level variable named ``application``. - -For more information on this file, see -https://docs.djangoproject.com/en/5.0/howto/deployment/asgi/ -""" - -import os - -from django.core.asgi import get_asgi_application - -os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_example.settings") - -application = get_asgi_application() diff --git a/examples/django_example/django_example/settings.py b/examples/django_example/django_example/settings.py deleted file mode 100644 index 087323b71..000000000 --- a/examples/django_example/django_example/settings.py +++ /dev/null @@ -1,123 +0,0 @@ -"""Django settings for django_example project. - -Generated by 'django-admin startproject' using Django 5.0.2. - -For more information on this file, see -https://docs.djangoproject.com/en/5.0/topics/settings/ - -For the full list of settings and their values, see -https://docs.djangoproject.com/en/5.0/ref/settings/ -""" - -from pathlib import Path - -# Build paths inside the project like this: BASE_DIR / 'subdir'. -BASE_DIR = Path(__file__).resolve().parent.parent - - -# Quick-start development settings - unsuitable for production -# See https://docs.djangoproject.com/en/5.0/howto/deployment/checklist/ - -# SECURITY WARNING: keep the secret key used in production secret! -SECRET_KEY = "django-insecure-4c6v7e7e*o&0uajrmb@7x9ti#e)!9kbdf#+1=t=qwd5fm&ui%b" - -# SECURITY WARNING: don't run with debug turned on in production! -DEBUG = True - -ALLOWED_HOSTS = ["localhost", "0.0.0.0"] - - -# Application definition - -INSTALLED_APPS = [ - "django.contrib.admin", - "django.contrib.auth", - "django.contrib.contenttypes", - "django.contrib.sessions", - "django.contrib.messages", - "django.contrib.staticfiles", - "myapp", -] - -MIDDLEWARE = [ - "django.middleware.security.SecurityMiddleware", - "django.contrib.sessions.middleware.SessionMiddleware", - "django.middleware.common.CommonMiddleware", - "django.middleware.csrf.CsrfViewMiddleware", - "django.contrib.auth.middleware.AuthenticationMiddleware", - "django.contrib.messages.middleware.MessageMiddleware", - "django.middleware.clickjacking.XFrameOptionsMiddleware", -] - -ROOT_URLCONF = "django_example.urls" - -TEMPLATES = [ - { - "BACKEND": "django.template.backends.django.DjangoTemplates", - "DIRS": [], - "APP_DIRS": True, - "OPTIONS": { - "context_processors": [ - "django.template.context_processors.debug", - "django.template.context_processors.request", - "django.contrib.auth.context_processors.auth", - "django.contrib.messages.context_processors.messages", - ], - }, - }, -] - -WSGI_APPLICATION = "django_example.wsgi.application" - - -# Database -# https://docs.djangoproject.com/en/5.0/ref/settings/#databases - -DATABASES = { - "default": { - "ENGINE": "django.db.backends.sqlite3", - "NAME": BASE_DIR / "db.sqlite3", - } -} - - -# Password validation -# https://docs.djangoproject.com/en/5.0/ref/settings/#auth-password-validators - -AUTH_PASSWORD_VALIDATORS = [ - { - "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", - }, - { - "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", - }, - { - "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", - }, - { - "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", - }, -] - - -# Internationalization -# https://docs.djangoproject.com/en/5.0/topics/i18n/ - -LANGUAGE_CODE = "en-us" - -TIME_ZONE = "UTC" - -USE_I18N = True - -USE_TZ = True - - -# Static files (CSS, JavaScript, Images) -# https://docs.djangoproject.com/en/5.0/howto/static-files/ - -STATIC_URL = "static/" - -# Default primary key field type -# https://docs.djangoproject.com/en/5.0/ref/settings/#default-auto-field - -DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField" diff --git a/examples/django_example/django_example/urls.py b/examples/django_example/django_example/urls.py deleted file mode 100644 index 954bde78e..000000000 --- a/examples/django_example/django_example/urls.py +++ /dev/null @@ -1,24 +0,0 @@ -"""URL configuration for django_example project. - -The `urlpatterns` list routes URLs to views. For more information please see: - https://docs.djangoproject.com/en/5.0/topics/http/urls/ - -Examples: -Function views - 1. Add an import: from my_app import views - 2. Add a URL to urlpatterns: path('', views.home, name='home') -Class-based views - 1. Add an import: from other_app.views import Home - 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') -Including another URLconf - 1. Import the include() function: from django.urls import include, path - 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) -""" - -from django.urls import path -from myapp import views - -urlpatterns = [ - path("", views.main_route, name="main_route"), - path("campaign/", views.campaign, name="campaign"), -] diff --git a/examples/django_example/django_example/wsgi.py b/examples/django_example/django_example/wsgi.py deleted file mode 100644 index 88093747b..000000000 --- a/examples/django_example/django_example/wsgi.py +++ /dev/null @@ -1,15 +0,0 @@ -"""WSGI config for django_example project. - -It exposes the WSGI callable as a module-level variable named ``application``. - -For more information on this file, see -https://docs.djangoproject.com/en/5.0/howto/deployment/wsgi/ -""" - -import os - -from django.core.wsgi import get_wsgi_application - -os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_example.settings") - -application = get_wsgi_application() diff --git a/examples/django_example/manage.py b/examples/django_example/manage.py deleted file mode 100755 index b3f0b0f57..000000000 --- a/examples/django_example/manage.py +++ /dev/null @@ -1,23 +0,0 @@ -#!/usr/bin/env python -"""Django's command-line utility for administrative tasks.""" - -import os -import sys - - -def main(): - """Run administrative tasks.""" - os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_example.settings") - try: - from django.core.management import execute_from_command_line - except ImportError as exc: - raise ImportError( - "Couldn't import Django. Are you sure it's installed and " - "available on your PYTHONPATH environment variable? Did you " - "forget to activate a virtual environment?" - ) from exc - execute_from_command_line(sys.argv) - - -if __name__ == "__main__": - main() diff --git a/examples/django_example/myapp/__init__.py b/examples/django_example/myapp/__init__.py deleted file mode 100644 index 69fa667a3..000000000 --- a/examples/django_example/myapp/__init__.py +++ /dev/null @@ -1,20 +0,0 @@ -import signal -import sys -from .langfuse_integration import langfuse_flush - - -def shutdown_handler(*args): - """This function handles the shutdown process. - - It calls the langfuse_flush function to flush any pending changes, - and then exits the program with a status code of 0. - """ - langfuse_flush() - sys.exit(0) - - -# Register the shutdown_handler for SIGINT (Ctrl+C) -signal.signal(signal.SIGINT, shutdown_handler) - -# Register the same shutdown_handler for SIGTERM -signal.signal(signal.SIGTERM, shutdown_handler) diff --git a/examples/django_example/myapp/apps.py b/examples/django_example/myapp/apps.py deleted file mode 100644 index da45bfa47..000000000 --- a/examples/django_example/myapp/apps.py +++ /dev/null @@ -1,6 +0,0 @@ -from django.apps import AppConfig - - -class MyappConfig(AppConfig): - default_auto_field = "django.db.models.BigAutoField" - name = "myapp" diff --git a/examples/django_example/myapp/langfuse_integration.py b/examples/django_example/myapp/langfuse_integration.py deleted file mode 100644 index d57b59a3e..000000000 --- a/examples/django_example/myapp/langfuse_integration.py +++ /dev/null @@ -1,54 +0,0 @@ -from langfuse import Langfuse - -# Initialize Langfuse -langfuse = Langfuse(public_key="pk-lf-1234567890", secret_key="sk-lf-1234567890") - - -def get_response_openai(prompt): - """This simulates the response to a prompt using the OpenAI API. - - Args: - prompt (str): The prompt for generating the response. - - Returns: - dict: A dictionary containing the response status and message (always "This is a test message"). - """ - try: - trace = langfuse.trace( - name="this-is-a-trace", - user_id="test", - metadata="test", - ) - - trace = trace.score( - name="user-feedback", - value=1, - comment="Some user feedback", - ) - - generation = trace.generation(name="this-is-a-generation", metadata="test") - - sub_generation = generation.generation( - name="this-is-a-sub-generation", metadata="test" - ) - - sub_sub_span = sub_generation.span( - name="this-is-a-sub-sub-span", metadata="test" - ) - - sub_sub_span = sub_sub_span.score( - name="user-feedback-o", - value=1, - comment="Some more user feedback", - ) - - response = {"status": "success", "message": "This is a test message"} - except Exception as e: - print("Error in creating campaigns from openAI:", str(e)) - return 503 - return response - - -def langfuse_flush(): - """Called by 'myapp/__init__.py' to flush any pending changes during shutdown.""" - langfuse.flush() diff --git a/examples/django_example/myapp/migrations/__init__.py b/examples/django_example/myapp/migrations/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/examples/django_example/myapp/views.py b/examples/django_example/myapp/views.py deleted file mode 100644 index a4cd55475..000000000 --- a/examples/django_example/myapp/views.py +++ /dev/null @@ -1,14 +0,0 @@ -from django.http import JsonResponse -from myapp.langfuse_integration import get_response_openai - - -def main_route(request): - return JsonResponse( - {"message": "Hey, this is an example showing how to use Langfuse with Django."} - ) - - -def campaign(request): - prompt = request.GET.get("prompt", "") - response = get_response_openai(prompt) - return JsonResponse(response) diff --git a/examples/django_example/poetry.lock b/examples/django_example/poetry.lock index e5de2fb01..e69de29bb 100644 --- a/examples/django_example/poetry.lock +++ b/examples/django_example/poetry.lock @@ -1,520 +0,0 @@ -# This file is automatically @generated by Poetry 1.8.5 and should not be changed by hand. - -[[package]] -name = "annotated-types" -version = "0.6.0" -description = "Reusable constraint types to use with typing.Annotated" -optional = false -python-versions = ">=3.8" -files = [ - {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, - {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, -] - -[[package]] -name = "anyio" -version = "4.2.0" -description = "High level compatibility layer for multiple asynchronous event loop implementations" -optional = false -python-versions = ">=3.8" -files = [ - {file = "anyio-4.2.0-py3-none-any.whl", hash = "sha256:745843b39e829e108e518c489b31dc757de7d2131d53fac32bd8df268227bfee"}, - {file = "anyio-4.2.0.tar.gz", hash = "sha256:e1875bb4b4e2de1669f4bc7869b6d3f54231cdced71605e6e64c9be77e3be50f"}, -] - -[package.dependencies] -exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} -idna = ">=2.8" -sniffio = ">=1.1" -typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} - -[package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] - -[[package]] -name = "asgiref" -version = "3.7.2" -description = "ASGI specs, helper code, and adapters" -optional = false -python-versions = ">=3.7" -files = [ - {file = "asgiref-3.7.2-py3-none-any.whl", hash = "sha256:89b2ef2247e3b562a16eef663bc0e2e703ec6468e2fa8a5cd61cd449786d4f6e"}, - {file = "asgiref-3.7.2.tar.gz", hash = "sha256:9e0ce3aa93a819ba5b45120216b23878cf6e8525eb3848653452b4192b92afed"}, -] - -[package.dependencies] -typing-extensions = {version = ">=4", markers = "python_version < \"3.11\""} - -[package.extras] -tests = ["mypy (>=0.800)", "pytest", "pytest-asyncio"] - -[[package]] -name = "backoff" -version = "2.2.1" -description = "Function decoration for backoff and retry" -optional = false -python-versions = ">=3.7,<4.0" -files = [ - {file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"}, - {file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"}, -] - -[[package]] -name = "certifi" -version = "2024.7.4" -description = "Python package for providing Mozilla's CA Bundle." -optional = false -python-versions = ">=3.6" -files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, -] - -[[package]] -name = "chevron" -version = "0.14.0" -description = "Mustache templating language renderer" -optional = false -python-versions = "*" -files = [ - {file = "chevron-0.14.0-py3-none-any.whl", hash = "sha256:fbf996a709f8da2e745ef763f482ce2d311aa817d287593a5b990d6d6e4f0443"}, - {file = "chevron-0.14.0.tar.gz", hash = "sha256:87613aafdf6d77b6a90ff073165a61ae5086e21ad49057aa0e53681601800ebf"}, -] - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "distro" -version = "1.9.0" -description = "Distro - an OS platform information API" -optional = false -python-versions = ">=3.6" -files = [ - {file = "distro-1.9.0-py3-none-any.whl", hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2"}, - {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, -] - -[[package]] -name = "django" -version = "5.0.11" -description = "A high-level Python web framework that encourages rapid development and clean, pragmatic design." -optional = false -python-versions = ">=3.10" -files = [ - {file = "Django-5.0.11-py3-none-any.whl", hash = "sha256:09e8128f717266bf382d82ffa4933f13da05d82579abf008ede86acb15dec88b"}, - {file = "Django-5.0.11.tar.gz", hash = "sha256:e7d98fa05ce09cb3e8d5ad6472fb602322acd1740bfdadc29c8404182d664f65"}, -] - -[package.dependencies] -asgiref = ">=3.7.0,<4" -sqlparse = ">=0.3.1" -tzdata = {version = "*", markers = "sys_platform == \"win32\""} - -[package.extras] -argon2 = ["argon2-cffi (>=19.1.0)"] -bcrypt = ["bcrypt"] - -[[package]] -name = "exceptiongroup" -version = "1.2.0" -description = "Backport of PEP 654 (exception groups)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, - {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "h11" -version = "0.14.0" -description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" -optional = false -python-versions = ">=3.7" -files = [ - {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, - {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, -] - -[[package]] -name = "httpcore" -version = "1.0.3" -description = "A minimal low-level HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpcore-1.0.3-py3-none-any.whl", hash = "sha256:9a6a501c3099307d9fd76ac244e08503427679b1e81ceb1d922485e2f2462ad2"}, - {file = "httpcore-1.0.3.tar.gz", hash = "sha256:5c0f9546ad17dac4d0772b0808856eb616eb8b48ce94f49ed819fd6982a8a544"}, -] - -[package.dependencies] -certifi = "*" -h11 = ">=0.13,<0.15" - -[package.extras] -asyncio = ["anyio (>=4.0,<5.0)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.24.0)"] - -[[package]] -name = "httpx" -version = "0.25.2" -description = "The next generation HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpx-0.25.2-py3-none-any.whl", hash = "sha256:a05d3d052d9b2dfce0e3896636467f8a5342fb2b902c819428e1ac65413ca118"}, - {file = "httpx-0.25.2.tar.gz", hash = "sha256:8b8fcaa0c8ea7b05edd69a094e63a2094c4efcb48129fb757361bc423c0ad9e8"}, -] - -[package.dependencies] -anyio = "*" -certifi = "*" -httpcore = "==1.*" -idna = "*" -sniffio = "*" - -[package.extras] -brotli = ["brotli", "brotlicffi"] -cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] - -[[package]] -name = "idna" -version = "3.7" -description = "Internationalized Domain Names in Applications (IDNA)" -optional = false -python-versions = ">=3.5" -files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, -] - -[[package]] -name = "langfuse" -version = "2.13.3" -description = "A client library for accessing langfuse" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [ - {file = "langfuse-2.13.3-py3-none-any.whl", hash = "sha256:7bdcf02a74366ef77d5258c2aaae07d11fabde9a90c883f9022ecaf244bfdeca"}, - {file = "langfuse-2.13.3.tar.gz", hash = "sha256:2be049382e867681eabf774d60aadad3e6c277841e2c7f06d71190379650c2d9"}, -] - -[package.dependencies] -backoff = ">=2.2.1,<3.0.0" -chevron = ">=0.14.0,<0.15.0" -httpx = ">=0.15.4,<0.26.0" -openai = ">=0.27.8" -packaging = ">=23.2,<24.0" -pydantic = ">=1.10.7,<3.0" -wrapt = "1.14" - -[package.extras] -langchain = ["langchain (>=0.0.309)"] - -[[package]] -name = "openai" -version = "1.12.0" -description = "The official Python library for the openai API" -optional = false -python-versions = ">=3.7.1" -files = [ - {file = "openai-1.12.0-py3-none-any.whl", hash = "sha256:a54002c814e05222e413664f651b5916714e4700d041d5cf5724d3ae1a3e3481"}, - {file = "openai-1.12.0.tar.gz", hash = "sha256:99c5d257d09ea6533d689d1cc77caa0ac679fa21efef8893d8b0832a86877f1b"}, -] - -[package.dependencies] -anyio = ">=3.5.0,<5" -distro = ">=1.7.0,<2" -httpx = ">=0.23.0,<1" -pydantic = ">=1.9.0,<3" -sniffio = "*" -tqdm = ">4" -typing-extensions = ">=4.7,<5" - -[package.extras] -datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] - -[[package]] -name = "packaging" -version = "23.2" -description = "Core utilities for Python packages" -optional = false -python-versions = ">=3.7" -files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, -] - -[[package]] -name = "pydantic" -version = "2.6.1" -description = "Data validation using Python type hints" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic-2.6.1-py3-none-any.whl", hash = "sha256:0b6a909df3192245cb736509a92ff69e4fef76116feffec68e93a567347bae6f"}, - {file = "pydantic-2.6.1.tar.gz", hash = "sha256:4fd5c182a2488dc63e6d32737ff19937888001e2a6d86e94b3f233104a5d1fa9"}, -] - -[package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.16.2" -typing-extensions = ">=4.6.1" - -[package.extras] -email = ["email-validator (>=2.0.0)"] - -[[package]] -name = "pydantic-core" -version = "2.16.2" -description = "" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic_core-2.16.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3fab4e75b8c525a4776e7630b9ee48aea50107fea6ca9f593c98da3f4d11bf7c"}, - {file = "pydantic_core-2.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8bde5b48c65b8e807409e6f20baee5d2cd880e0fad00b1a811ebc43e39a00ab2"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2924b89b16420712e9bb8192396026a8fbd6d8726224f918353ac19c4c043d2a"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:16aa02e7a0f539098e215fc193c8926c897175d64c7926d00a36188917717a05"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:936a787f83db1f2115ee829dd615c4f684ee48ac4de5779ab4300994d8af325b"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:459d6be6134ce3b38e0ef76f8a672924460c455d45f1ad8fdade36796df1ddc8"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9ee4febb249c591d07b2d4dd36ebcad0ccd128962aaa1801508320896575ef"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:40a0bd0bed96dae5712dab2aba7d334a6c67cbcac2ddfca7dbcc4a8176445990"}, - {file = "pydantic_core-2.16.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:870dbfa94de9b8866b37b867a2cb37a60c401d9deb4a9ea392abf11a1f98037b"}, - {file = "pydantic_core-2.16.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:308974fdf98046db28440eb3377abba274808bf66262e042c412eb2adf852731"}, - {file = "pydantic_core-2.16.2-cp310-none-win32.whl", hash = "sha256:a477932664d9611d7a0816cc3c0eb1f8856f8a42435488280dfbf4395e141485"}, - {file = "pydantic_core-2.16.2-cp310-none-win_amd64.whl", hash = "sha256:8f9142a6ed83d90c94a3efd7af8873bf7cefed2d3d44387bf848888482e2d25f"}, - {file = "pydantic_core-2.16.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:406fac1d09edc613020ce9cf3f2ccf1a1b2f57ab00552b4c18e3d5276c67eb11"}, - {file = "pydantic_core-2.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ce232a6170dd6532096cadbf6185271e4e8c70fc9217ebe105923ac105da9978"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a90fec23b4b05a09ad988e7a4f4e081711a90eb2a55b9c984d8b74597599180f"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8aafeedb6597a163a9c9727d8a8bd363a93277701b7bfd2749fbefee2396469e"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9957433c3a1b67bdd4c63717eaf174ebb749510d5ea612cd4e83f2d9142f3fc8"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b0d7a9165167269758145756db43a133608a531b1e5bb6a626b9ee24bc38a8f7"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dffaf740fe2e147fedcb6b561353a16243e654f7fe8e701b1b9db148242e1272"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f8ed79883b4328b7f0bd142733d99c8e6b22703e908ec63d930b06be3a0e7113"}, - {file = "pydantic_core-2.16.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:cf903310a34e14651c9de056fcc12ce090560864d5a2bb0174b971685684e1d8"}, - {file = "pydantic_core-2.16.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:46b0d5520dbcafea9a8645a8164658777686c5c524d381d983317d29687cce97"}, - {file = "pydantic_core-2.16.2-cp311-none-win32.whl", hash = "sha256:70651ff6e663428cea902dac297066d5c6e5423fda345a4ca62430575364d62b"}, - {file = "pydantic_core-2.16.2-cp311-none-win_amd64.whl", hash = "sha256:98dc6f4f2095fc7ad277782a7c2c88296badcad92316b5a6e530930b1d475ebc"}, - {file = "pydantic_core-2.16.2-cp311-none-win_arm64.whl", hash = "sha256:ef6113cd31411eaf9b39fc5a8848e71c72656fd418882488598758b2c8c6dfa0"}, - {file = "pydantic_core-2.16.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:88646cae28eb1dd5cd1e09605680c2b043b64d7481cdad7f5003ebef401a3039"}, - {file = "pydantic_core-2.16.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7b883af50eaa6bb3299780651e5be921e88050ccf00e3e583b1e92020333304b"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bf26c2e2ea59d32807081ad51968133af3025c4ba5753e6a794683d2c91bf6e"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:99af961d72ac731aae2a1b55ccbdae0733d816f8bfb97b41909e143de735f522"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02906e7306cb8c5901a1feb61f9ab5e5c690dbbeaa04d84c1b9ae2a01ebe9379"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5362d099c244a2d2f9659fb3c9db7c735f0004765bbe06b99be69fbd87c3f15"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ac426704840877a285d03a445e162eb258924f014e2f074e209d9b4ff7bf380"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b94cbda27267423411c928208e89adddf2ea5dd5f74b9528513f0358bba019cb"}, - {file = "pydantic_core-2.16.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:6db58c22ac6c81aeac33912fb1af0e930bc9774166cdd56eade913d5f2fff35e"}, - {file = "pydantic_core-2.16.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:396fdf88b1b503c9c59c84a08b6833ec0c3b5ad1a83230252a9e17b7dfb4cffc"}, - {file = "pydantic_core-2.16.2-cp312-none-win32.whl", hash = "sha256:7c31669e0c8cc68400ef0c730c3a1e11317ba76b892deeefaf52dcb41d56ed5d"}, - {file = "pydantic_core-2.16.2-cp312-none-win_amd64.whl", hash = "sha256:a3b7352b48fbc8b446b75f3069124e87f599d25afb8baa96a550256c031bb890"}, - {file = "pydantic_core-2.16.2-cp312-none-win_arm64.whl", hash = "sha256:a9e523474998fb33f7c1a4d55f5504c908d57add624599e095c20fa575b8d943"}, - {file = "pydantic_core-2.16.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:ae34418b6b389d601b31153b84dce480351a352e0bb763684a1b993d6be30f17"}, - {file = "pydantic_core-2.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:732bd062c9e5d9582a30e8751461c1917dd1ccbdd6cafb032f02c86b20d2e7ec"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4b52776a2e3230f4854907a1e0946eec04d41b1fc64069ee774876bbe0eab55"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ef551c053692b1e39e3f7950ce2296536728871110e7d75c4e7753fb30ca87f4"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ebb892ed8599b23fa8f1799e13a12c87a97a6c9d0f497525ce9858564c4575a4"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa6c8c582036275997a733427b88031a32ffa5dfc3124dc25a730658c47a572f"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4ba0884a91f1aecce75202473ab138724aa4fb26d7707f2e1fa6c3e68c84fbf"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7924e54f7ce5d253d6160090ddc6df25ed2feea25bfb3339b424a9dd591688bc"}, - {file = "pydantic_core-2.16.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69a7b96b59322a81c2203be537957313b07dd333105b73db0b69212c7d867b4b"}, - {file = "pydantic_core-2.16.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:7e6231aa5bdacda78e96ad7b07d0c312f34ba35d717115f4b4bff6cb87224f0f"}, - {file = "pydantic_core-2.16.2-cp38-none-win32.whl", hash = "sha256:41dac3b9fce187a25c6253ec79a3f9e2a7e761eb08690e90415069ea4a68ff7a"}, - {file = "pydantic_core-2.16.2-cp38-none-win_amd64.whl", hash = "sha256:f685dbc1fdadb1dcd5b5e51e0a378d4685a891b2ddaf8e2bba89bd3a7144e44a"}, - {file = "pydantic_core-2.16.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:55749f745ebf154c0d63d46c8c58594d8894b161928aa41adbb0709c1fe78b77"}, - {file = "pydantic_core-2.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b30b0dd58a4509c3bd7eefddf6338565c4905406aee0c6e4a5293841411a1286"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18de31781cdc7e7b28678df7c2d7882f9692ad060bc6ee3c94eb15a5d733f8f7"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5864b0242f74b9dd0b78fd39db1768bc3f00d1ffc14e596fd3e3f2ce43436a33"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8f9186ca45aee030dc8234118b9c0784ad91a0bb27fc4e7d9d6608a5e3d386c"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cc6f6c9be0ab6da37bc77c2dda5f14b1d532d5dbef00311ee6e13357a418e646"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa057095f621dad24a1e906747179a69780ef45cc8f69e97463692adbcdae878"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ad84731a26bcfb299f9eab56c7932d46f9cad51c52768cace09e92a19e4cf55"}, - {file = "pydantic_core-2.16.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3b052c753c4babf2d1edc034c97851f867c87d6f3ea63a12e2700f159f5c41c3"}, - {file = "pydantic_core-2.16.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e0f686549e32ccdb02ae6f25eee40cc33900910085de6aa3790effd391ae10c2"}, - {file = "pydantic_core-2.16.2-cp39-none-win32.whl", hash = "sha256:7afb844041e707ac9ad9acad2188a90bffce2c770e6dc2318be0c9916aef1469"}, - {file = "pydantic_core-2.16.2-cp39-none-win_amd64.whl", hash = "sha256:9da90d393a8227d717c19f5397688a38635afec89f2e2d7af0df037f3249c39a"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5f60f920691a620b03082692c378661947d09415743e437a7478c309eb0e4f82"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:47924039e785a04d4a4fa49455e51b4eb3422d6eaacfde9fc9abf8fdef164e8a"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6294e76b0380bb7a61eb8a39273c40b20beb35e8c87ee101062834ced19c545"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe56851c3f1d6f5384b3051c536cc81b3a93a73faf931f404fef95217cf1e10d"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9d776d30cde7e541b8180103c3f294ef7c1862fd45d81738d156d00551005784"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:72f7919af5de5ecfaf1eba47bf9a5d8aa089a3340277276e5636d16ee97614d7"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:4bfcbde6e06c56b30668a0c872d75a7ef3025dc3c1823a13cf29a0e9b33f67e8"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ff7c97eb7a29aba230389a2661edf2e9e06ce616c7e35aa764879b6894a44b25"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9b5f13857da99325dcabe1cc4e9e6a3d7b2e2c726248ba5dd4be3e8e4a0b6d0e"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:a7e41e3ada4cca5f22b478c08e973c930e5e6c7ba3588fb8e35f2398cdcc1545"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:60eb8ceaa40a41540b9acae6ae7c1f0a67d233c40dc4359c256ad2ad85bdf5e5"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7beec26729d496a12fd23cf8da9944ee338c8b8a17035a560b585c36fe81af20"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:22c5f022799f3cd6741e24f0443ead92ef42be93ffda0d29b2597208c94c3753"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:eca58e319f4fd6df004762419612122b2c7e7d95ffafc37e890252f869f3fb2a"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ed957db4c33bc99895f3a1672eca7e80e8cda8bd1e29a80536b4ec2153fa9804"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:459c0d338cc55d099798618f714b21b7ece17eb1a87879f2da20a3ff4c7628e2"}, - {file = "pydantic_core-2.16.2.tar.gz", hash = "sha256:0ba503850d8b8dcc18391f10de896ae51d37fe5fe43dbfb6a35c5c5cad271a06"}, -] - -[package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "sniffio" -version = "1.3.0" -description = "Sniff out which async library your code is running under" -optional = false -python-versions = ">=3.7" -files = [ - {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, - {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, -] - -[[package]] -name = "sqlparse" -version = "0.5.0" -description = "A non-validating SQL parser." -optional = false -python-versions = ">=3.8" -files = [ - {file = "sqlparse-0.5.0-py3-none-any.whl", hash = "sha256:c204494cd97479d0e39f28c93d46c0b2d5959c7b9ab904762ea6c7af211c8663"}, - {file = "sqlparse-0.5.0.tar.gz", hash = "sha256:714d0a4932c059d16189f58ef5411ec2287a4360f17cdd0edd2d09d4c5087c93"}, -] - -[package.extras] -dev = ["build", "hatch"] -doc = ["sphinx"] - -[[package]] -name = "tqdm" -version = "4.66.3" -description = "Fast, Extensible Progress Meter" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tqdm-4.66.3-py3-none-any.whl", hash = "sha256:4f41d54107ff9a223dca80b53efe4fb654c67efaba7f47bada3ee9d50e05bd53"}, - {file = "tqdm-4.66.3.tar.gz", hash = "sha256:23097a41eba115ba99ecae40d06444c15d1c0c698d527a01c6c8bd1c5d0647e5"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "typing-extensions" -version = "4.9.0" -description = "Backported and Experimental Type Hints for Python 3.8+" -optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, - {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, -] - -[[package]] -name = "tzdata" -version = "2024.1" -description = "Provider of IANA time zone data" -optional = false -python-versions = ">=2" -files = [ - {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, - {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, -] - -[[package]] -name = "wrapt" -version = "1.14.0" -description = "Module for decorators, wrappers and monkey patching." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" -files = [ - {file = "wrapt-1.14.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:5a9a1889cc01ed2ed5f34574c90745fab1dd06ec2eee663e8ebeefe363e8efd7"}, - {file = "wrapt-1.14.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:9a3ff5fb015f6feb78340143584d9f8a0b91b6293d6b5cf4295b3e95d179b88c"}, - {file = "wrapt-1.14.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:4b847029e2d5e11fd536c9ac3136ddc3f54bc9488a75ef7d040a3900406a91eb"}, - {file = "wrapt-1.14.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:9a5a544861b21e0e7575b6023adebe7a8c6321127bb1d238eb40d99803a0e8bd"}, - {file = "wrapt-1.14.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:88236b90dda77f0394f878324cfbae05ae6fde8a84d548cfe73a75278d760291"}, - {file = "wrapt-1.14.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:f0408e2dbad9e82b4c960274214af533f856a199c9274bd4aff55d4634dedc33"}, - {file = "wrapt-1.14.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:9d8c68c4145041b4eeae96239802cfdfd9ef927754a5be3f50505f09f309d8c6"}, - {file = "wrapt-1.14.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:22626dca56fd7f55a0733e604f1027277eb0f4f3d95ff28f15d27ac25a45f71b"}, - {file = "wrapt-1.14.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:65bf3eb34721bf18b5a021a1ad7aa05947a1767d1aa272b725728014475ea7d5"}, - {file = "wrapt-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:09d16ae7a13cff43660155383a2372b4aa09109c7127aa3f24c3cf99b891c330"}, - {file = "wrapt-1.14.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:debaf04f813ada978d7d16c7dfa16f3c9c2ec9adf4656efdc4defdf841fc2f0c"}, - {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:748df39ed634851350efa87690c2237a678ed794fe9ede3f0d79f071ee042561"}, - {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1807054aa7b61ad8d8103b3b30c9764de2e9d0c0978e9d3fc337e4e74bf25faa"}, - {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763a73ab377390e2af26042f685a26787c402390f682443727b847e9496e4a2a"}, - {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:8529b07b49b2d89d6917cfa157d3ea1dfb4d319d51e23030664a827fe5fd2131"}, - {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:68aeefac31c1f73949662ba8affaf9950b9938b712fb9d428fa2a07e40ee57f8"}, - {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59d7d92cee84a547d91267f0fea381c363121d70fe90b12cd88241bd9b0e1763"}, - {file = "wrapt-1.14.0-cp310-cp310-win32.whl", hash = "sha256:3a88254881e8a8c4784ecc9cb2249ff757fd94b911d5df9a5984961b96113fff"}, - {file = "wrapt-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:9a242871b3d8eecc56d350e5e03ea1854de47b17f040446da0e47dc3e0b9ad4d"}, - {file = "wrapt-1.14.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:a65bffd24409454b889af33b6c49d0d9bcd1a219b972fba975ac935f17bdf627"}, - {file = "wrapt-1.14.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9d9fcd06c952efa4b6b95f3d788a819b7f33d11bea377be6b8980c95e7d10775"}, - {file = "wrapt-1.14.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:db6a0ddc1282ceb9032e41853e659c9b638789be38e5b8ad7498caac00231c23"}, - {file = "wrapt-1.14.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:14e7e2c5f5fca67e9a6d5f753d21f138398cad2b1159913ec9e9a67745f09ba3"}, - {file = "wrapt-1.14.0-cp35-cp35m-win32.whl", hash = "sha256:6d9810d4f697d58fd66039ab959e6d37e63ab377008ef1d63904df25956c7db0"}, - {file = "wrapt-1.14.0-cp35-cp35m-win_amd64.whl", hash = "sha256:d808a5a5411982a09fef6b49aac62986274ab050e9d3e9817ad65b2791ed1425"}, - {file = "wrapt-1.14.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b77159d9862374da213f741af0c361720200ab7ad21b9f12556e0eb95912cd48"}, - {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36a76a7527df8583112b24adc01748cd51a2d14e905b337a6fefa8b96fc708fb"}, - {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0057b5435a65b933cbf5d859cd4956624df37b8bf0917c71756e4b3d9958b9e"}, - {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a0a4ca02752ced5f37498827e49c414d694ad7cf451ee850e3ff160f2bee9d3"}, - {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:8c6be72eac3c14baa473620e04f74186c5d8f45d80f8f2b4eda6e1d18af808e8"}, - {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:21b1106bff6ece8cb203ef45b4f5778d7226c941c83aaaa1e1f0f4f32cc148cd"}, - {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:493da1f8b1bb8a623c16552fb4a1e164c0200447eb83d3f68b44315ead3f9036"}, - {file = "wrapt-1.14.0-cp36-cp36m-win32.whl", hash = "sha256:89ba3d548ee1e6291a20f3c7380c92f71e358ce8b9e48161401e087e0bc740f8"}, - {file = "wrapt-1.14.0-cp36-cp36m-win_amd64.whl", hash = "sha256:729d5e96566f44fccac6c4447ec2332636b4fe273f03da128fff8d5559782b06"}, - {file = "wrapt-1.14.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:891c353e95bb11abb548ca95c8b98050f3620a7378332eb90d6acdef35b401d4"}, - {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23f96134a3aa24cc50614920cc087e22f87439053d886e474638c68c8d15dc80"}, - {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6807bcee549a8cb2f38f73f469703a1d8d5d990815c3004f21ddb68a567385ce"}, - {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6915682f9a9bc4cf2908e83caf5895a685da1fbd20b6d485dafb8e218a338279"}, - {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f2f3bc7cd9c9fcd39143f11342eb5963317bd54ecc98e3650ca22704b69d9653"}, - {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3a71dbd792cc7a3d772ef8cd08d3048593f13d6f40a11f3427c000cf0a5b36a0"}, - {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:5a0898a640559dec00f3614ffb11d97a2666ee9a2a6bad1259c9facd01a1d4d9"}, - {file = "wrapt-1.14.0-cp37-cp37m-win32.whl", hash = "sha256:167e4793dc987f77fd476862d32fa404d42b71f6a85d3b38cbce711dba5e6b68"}, - {file = "wrapt-1.14.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d066ffc5ed0be00cd0352c95800a519cf9e4b5dd34a028d301bdc7177c72daf3"}, - {file = "wrapt-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d9bdfa74d369256e4218000a629978590fd7cb6cf6893251dad13d051090436d"}, - {file = "wrapt-1.14.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2498762814dd7dd2a1d0248eda2afbc3dd9c11537bc8200a4b21789b6df6cd38"}, - {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f24ca7953f2643d59a9c87d6e272d8adddd4a53bb62b9208f36db408d7aafc7"}, - {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b835b86bd5a1bdbe257d610eecab07bf685b1af2a7563093e0e69180c1d4af1"}, - {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b21650fa6907e523869e0396c5bd591cc326e5c1dd594dcdccac089561cacfb8"}, - {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:354d9fc6b1e44750e2a67b4b108841f5f5ea08853453ecbf44c81fdc2e0d50bd"}, - {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1f83e9c21cd5275991076b2ba1cd35418af3504667affb4745b48937e214bafe"}, - {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:61e1a064906ccba038aa3c4a5a82f6199749efbbb3cef0804ae5c37f550eded0"}, - {file = "wrapt-1.14.0-cp38-cp38-win32.whl", hash = "sha256:28c659878f684365d53cf59dc9a1929ea2eecd7ac65da762be8b1ba193f7e84f"}, - {file = "wrapt-1.14.0-cp38-cp38-win_amd64.whl", hash = "sha256:b0ed6ad6c9640671689c2dbe6244680fe8b897c08fd1fab2228429b66c518e5e"}, - {file = "wrapt-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b3f7e671fb19734c872566e57ce7fc235fa953d7c181bb4ef138e17d607dc8a1"}, - {file = "wrapt-1.14.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87fa943e8bbe40c8c1ba4086971a6fefbf75e9991217c55ed1bcb2f1985bd3d4"}, - {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4775a574e9d84e0212f5b18886cace049a42e13e12009bb0491562a48bb2b758"}, - {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9d57677238a0c5411c76097b8b93bdebb02eb845814c90f0b01727527a179e4d"}, - {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00108411e0f34c52ce16f81f1d308a571df7784932cc7491d1e94be2ee93374b"}, - {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d332eecf307fca852d02b63f35a7872de32d5ba8b4ec32da82f45df986b39ff6"}, - {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:01f799def9b96a8ec1ef6b9c1bbaf2bbc859b87545efbecc4a78faea13d0e3a0"}, - {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47045ed35481e857918ae78b54891fac0c1d197f22c95778e66302668309336c"}, - {file = "wrapt-1.14.0-cp39-cp39-win32.whl", hash = "sha256:2eca15d6b947cfff51ed76b2d60fd172c6ecd418ddab1c5126032d27f74bc350"}, - {file = "wrapt-1.14.0-cp39-cp39-win_amd64.whl", hash = "sha256:bb36fbb48b22985d13a6b496ea5fb9bb2a076fea943831643836c9f6febbcfdc"}, - {file = "wrapt-1.14.0.tar.gz", hash = "sha256:8323a43bd9c91f62bb7d4be74cc9ff10090e7ef820e27bfe8815c57e68261311"}, -] - -[metadata] -lock-version = "2.0" -python-versions = "^3.10" -content-hash = "50262a5ce4770994435421458f255accba11afb55d61b73263bac19980887419" diff --git a/examples/django_example/pyproject.toml b/examples/django_example/pyproject.toml index 909f99cf0..e69de29bb 100644 --- a/examples/django_example/pyproject.toml +++ b/examples/django_example/pyproject.toml @@ -1,16 +0,0 @@ -[tool.poetry] -name = "django-example" -version = "0.1.0" -description = "" -authors = ["ChrisTho23 "] -readme = "README.md" - -[tool.poetry.dependencies] -python = "^3.10" -django = "^5.0.11" -langfuse = "^2.13.3" - - -[build-system] -requires = ["poetry-core"] -build-backend = "poetry.core.masonry.api" diff --git a/examples/fastapi_example/README.md b/examples/fastapi_example/README.md deleted file mode 100644 index 6814e29ce..000000000 --- a/examples/fastapi_example/README.md +++ /dev/null @@ -1,23 +0,0 @@ -# fastapi_example - -This is an example FastAPI application showcasing integration with Langfuse for event tracing and response generation. - -1. **Shutdown Behavior**: The application defines shutdown logic using FastAPI's lifespan feature. On shutdown, it flushes all events to Langfuse, ensuring data integrity and completeness. - -2. **Endpoints**: - - `/`: Returns a simple message demonstrating the usage of Langfuse with FastAPI. - - `"/campaign/"`: Accepts a `prompt` and employs Langfuse for event tracing. (Note: OpenAI is referenced for context but not used in this example). - -3. **Integration**: - - Langfuse: Utilized for event tracing with `trace`, `score`, `generation`, and `span` operations. (Note that OpenAI is not actually used here to generate an answer to the prompt. This example is just to show how to use FastAPI with the Langfuse SDK) - -4. **Dependencies**: - - FastAPI: Web framework for building APIs. - - Langfuse: Library for event tracing and management. - -5. **Usage**: - - Preparation: Ensure langfuse is installed and configured in the `fastapi_example/main.py` file. - - Starting the Server: Navigate to the root directory of the project `langfuse-python/examples/fastapi_examples`. Run the application using `poetry run start`. - - Access endpoints at `http://localhost:8000`. - -For more details on FastAPI and Langfuse refer to their respective documentation. diff --git a/examples/fastapi_example/fastapi_example/__init__.py b/examples/fastapi_example/fastapi_example/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/examples/fastapi_example/fastapi_example/main.py b/examples/fastapi_example/fastapi_example/main.py deleted file mode 100644 index 4feac445a..000000000 --- a/examples/fastapi_example/fastapi_example/main.py +++ /dev/null @@ -1,89 +0,0 @@ -from contextlib import asynccontextmanager -from fastapi import FastAPI, Query, BackgroundTasks -from langfuse import Langfuse -import uvicorn - - -@asynccontextmanager -async def lifespan(app: FastAPI): - # Operation on startup - - yield # wait until shutdown - - # Flush all events to be sent to Langfuse on shutdown. This operation is blocking. - langfuse.flush() - - -app = FastAPI(lifespan=lifespan) - - -@app.get("/") -async def main_route(): - return { - "message": "Hey, this is an example showing how to use Langfuse with FastAPI." - } - - -# Initialize Langfuse -langfuse = Langfuse(public_key="pk-lf-1234567890", secret_key="sk-lf-1234567890") - - -async def get_response_openai(prompt, background_tasks: BackgroundTasks): - """This simulates the response to a prompt using the OpenAI API. - - Args: - prompt (str): The prompt for generating the response. - background_tasks (BackgroundTasks): An object for handling background tasks. - - Returns: - dict: A dictionary containing the response status and message (always "This is a test message"). - """ - try: - trace = langfuse.trace( - name="this-is-a-trace", - user_id="test", - metadata="test", - ) - - trace = trace.score( - name="user-feedback", - value=1, - comment="Some user feedback", - ) - - generation = trace.generation(name="this-is-a-generation", metadata="test") - - sub_generation = generation.generation( - name="this-is-a-sub-generation", metadata="test" - ) - - sub_sub_span = sub_generation.span( - name="this-is-a-sub-sub-span", metadata="test" - ) - - sub_sub_span = sub_sub_span.score( - name="user-feedback-o", - value=1, - comment="Some more user feedback", - ) - - response = {"status": "success", "message": "This is a test message"} - except Exception as e: - print("Error in creating campaigns from openAI:", str(e)) - return 503 - return response - - -@app.get( - "/campaign/", - tags=["APIs"], -) -async def campaign( - background_tasks: BackgroundTasks, prompt: str = Query(..., max_length=20) -): - return await get_response_openai(prompt, background_tasks) - - -def start(): - """Launched with `poetry run start` at root level""" - uvicorn.run("fastapi_example.main:app", host="0.0.0.0", port=8000, reload=True) diff --git a/examples/fastapi_example/poetry.lock b/examples/fastapi_example/poetry.lock deleted file mode 100644 index 5a5781fb8..000000000 --- a/examples/fastapi_example/poetry.lock +++ /dev/null @@ -1,526 +0,0 @@ -# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. - -[[package]] -name = "annotated-types" -version = "0.6.0" -description = "Reusable constraint types to use with typing.Annotated" -optional = false -python-versions = ">=3.8" -files = [ - {file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"}, - {file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"}, -] - -[[package]] -name = "anyio" -version = "4.2.0" -description = "High level compatibility layer for multiple asynchronous event loop implementations" -optional = false -python-versions = ">=3.8" -files = [ - {file = "anyio-4.2.0-py3-none-any.whl", hash = "sha256:745843b39e829e108e518c489b31dc757de7d2131d53fac32bd8df268227bfee"}, - {file = "anyio-4.2.0.tar.gz", hash = "sha256:e1875bb4b4e2de1669f4bc7869b6d3f54231cdced71605e6e64c9be77e3be50f"}, -] - -[package.dependencies] -exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} -idna = ">=2.8" -sniffio = ">=1.1" -typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} - -[package.extras] -doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] -test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] -trio = ["trio (>=0.23)"] - -[[package]] -name = "backoff" -version = "2.2.1" -description = "Function decoration for backoff and retry" -optional = false -python-versions = ">=3.7,<4.0" -files = [ - {file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"}, - {file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"}, -] - -[[package]] -name = "certifi" -version = "2024.7.4" -description = "Python package for providing Mozilla's CA Bundle." -optional = false -python-versions = ">=3.6" -files = [ - {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, - {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, -] - -[[package]] -name = "chevron" -version = "0.14.0" -description = "Mustache templating language renderer" -optional = false -python-versions = "*" -files = [ - {file = "chevron-0.14.0-py3-none-any.whl", hash = "sha256:fbf996a709f8da2e745ef763f482ce2d311aa817d287593a5b990d6d6e4f0443"}, - {file = "chevron-0.14.0.tar.gz", hash = "sha256:87613aafdf6d77b6a90ff073165a61ae5086e21ad49057aa0e53681601800ebf"}, -] - -[[package]] -name = "click" -version = "8.1.7" -description = "Composable command line interface toolkit" -optional = false -python-versions = ">=3.7" -files = [ - {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, - {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[[package]] -name = "colorama" -version = "0.4.6" -description = "Cross-platform colored terminal text." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" -files = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] - -[[package]] -name = "distro" -version = "1.9.0" -description = "Distro - an OS platform information API" -optional = false -python-versions = ">=3.6" -files = [ - {file = "distro-1.9.0-py3-none-any.whl", hash = "sha256:7bffd925d65168f85027d8da9af6bddab658135b840670a223589bc0c8ef02b2"}, - {file = "distro-1.9.0.tar.gz", hash = "sha256:2fa77c6fd8940f116ee1d6b94a2f90b13b5ea8d019b98bc8bafdcabcdd9bdbed"}, -] - -[[package]] -name = "exceptiongroup" -version = "1.2.0" -description = "Backport of PEP 654 (exception groups)" -optional = false -python-versions = ">=3.7" -files = [ - {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, - {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, -] - -[package.extras] -test = ["pytest (>=6)"] - -[[package]] -name = "fastapi" -version = "0.109.2" -description = "FastAPI framework, high performance, easy to learn, fast to code, ready for production" -optional = false -python-versions = ">=3.8" -files = [ - {file = "fastapi-0.109.2-py3-none-any.whl", hash = "sha256:2c9bab24667293b501cad8dd388c05240c850b58ec5876ee3283c47d6e1e3a4d"}, - {file = "fastapi-0.109.2.tar.gz", hash = "sha256:f3817eac96fe4f65a2ebb4baa000f394e55f5fccdaf7f75250804bc58f354f73"}, -] - -[package.dependencies] -pydantic = ">=1.7.4,<1.8 || >1.8,<1.8.1 || >1.8.1,<2.0.0 || >2.0.0,<2.0.1 || >2.0.1,<2.1.0 || >2.1.0,<3.0.0" -starlette = ">=0.36.3,<0.37.0" -typing-extensions = ">=4.8.0" - -[package.extras] -all = ["email-validator (>=2.0.0)", "httpx (>=0.23.0)", "itsdangerous (>=1.1.0)", "jinja2 (>=2.11.2)", "orjson (>=3.2.1)", "pydantic-extra-types (>=2.0.0)", "pydantic-settings (>=2.0.0)", "python-multipart (>=0.0.7)", "pyyaml (>=5.3.1)", "ujson (>=4.0.1,!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0)", "uvicorn[standard] (>=0.12.0)"] - -[[package]] -name = "h11" -version = "0.14.0" -description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" -optional = false -python-versions = ">=3.7" -files = [ - {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, - {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, -] - -[[package]] -name = "httpcore" -version = "1.0.3" -description = "A minimal low-level HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpcore-1.0.3-py3-none-any.whl", hash = "sha256:9a6a501c3099307d9fd76ac244e08503427679b1e81ceb1d922485e2f2462ad2"}, - {file = "httpcore-1.0.3.tar.gz", hash = "sha256:5c0f9546ad17dac4d0772b0808856eb616eb8b48ce94f49ed819fd6982a8a544"}, -] - -[package.dependencies] -certifi = "*" -h11 = ">=0.13,<0.15" - -[package.extras] -asyncio = ["anyio (>=4.0,<5.0)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] -trio = ["trio (>=0.22.0,<0.24.0)"] - -[[package]] -name = "httpx" -version = "0.25.2" -description = "The next generation HTTP client." -optional = false -python-versions = ">=3.8" -files = [ - {file = "httpx-0.25.2-py3-none-any.whl", hash = "sha256:a05d3d052d9b2dfce0e3896636467f8a5342fb2b902c819428e1ac65413ca118"}, - {file = "httpx-0.25.2.tar.gz", hash = "sha256:8b8fcaa0c8ea7b05edd69a094e63a2094c4efcb48129fb757361bc423c0ad9e8"}, -] - -[package.dependencies] -anyio = "*" -certifi = "*" -httpcore = "==1.*" -idna = "*" -sniffio = "*" - -[package.extras] -brotli = ["brotli", "brotlicffi"] -cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] -http2 = ["h2 (>=3,<5)"] -socks = ["socksio (==1.*)"] - -[[package]] -name = "idna" -version = "3.7" -description = "Internationalized Domain Names in Applications (IDNA)" -optional = false -python-versions = ">=3.5" -files = [ - {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, - {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, -] - -[[package]] -name = "langfuse" -version = "2.13.3" -description = "A client library for accessing langfuse" -optional = false -python-versions = ">=3.8.1,<4.0" -files = [ - {file = "langfuse-2.13.3-py3-none-any.whl", hash = "sha256:7bdcf02a74366ef77d5258c2aaae07d11fabde9a90c883f9022ecaf244bfdeca"}, - {file = "langfuse-2.13.3.tar.gz", hash = "sha256:2be049382e867681eabf774d60aadad3e6c277841e2c7f06d71190379650c2d9"}, -] - -[package.dependencies] -backoff = ">=2.2.1,<3.0.0" -chevron = ">=0.14.0,<0.15.0" -httpx = ">=0.15.4,<0.26.0" -openai = ">=0.27.8" -packaging = ">=23.2,<24.0" -pydantic = ">=1.10.7,<3.0" -wrapt = "1.14" - -[package.extras] -langchain = ["langchain (>=0.0.309)"] - -[[package]] -name = "openai" -version = "1.12.0" -description = "The official Python library for the openai API" -optional = false -python-versions = ">=3.7.1" -files = [ - {file = "openai-1.12.0-py3-none-any.whl", hash = "sha256:a54002c814e05222e413664f651b5916714e4700d041d5cf5724d3ae1a3e3481"}, - {file = "openai-1.12.0.tar.gz", hash = "sha256:99c5d257d09ea6533d689d1cc77caa0ac679fa21efef8893d8b0832a86877f1b"}, -] - -[package.dependencies] -anyio = ">=3.5.0,<5" -distro = ">=1.7.0,<2" -httpx = ">=0.23.0,<1" -pydantic = ">=1.9.0,<3" -sniffio = "*" -tqdm = ">4" -typing-extensions = ">=4.7,<5" - -[package.extras] -datalib = ["numpy (>=1)", "pandas (>=1.2.3)", "pandas-stubs (>=1.1.0.11)"] - -[[package]] -name = "packaging" -version = "23.2" -description = "Core utilities for Python packages" -optional = false -python-versions = ">=3.7" -files = [ - {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, - {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, -] - -[[package]] -name = "pydantic" -version = "2.6.1" -description = "Data validation using Python type hints" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic-2.6.1-py3-none-any.whl", hash = "sha256:0b6a909df3192245cb736509a92ff69e4fef76116feffec68e93a567347bae6f"}, - {file = "pydantic-2.6.1.tar.gz", hash = "sha256:4fd5c182a2488dc63e6d32737ff19937888001e2a6d86e94b3f233104a5d1fa9"}, -] - -[package.dependencies] -annotated-types = ">=0.4.0" -pydantic-core = "2.16.2" -typing-extensions = ">=4.6.1" - -[package.extras] -email = ["email-validator (>=2.0.0)"] - -[[package]] -name = "pydantic-core" -version = "2.16.2" -description = "" -optional = false -python-versions = ">=3.8" -files = [ - {file = "pydantic_core-2.16.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3fab4e75b8c525a4776e7630b9ee48aea50107fea6ca9f593c98da3f4d11bf7c"}, - {file = "pydantic_core-2.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8bde5b48c65b8e807409e6f20baee5d2cd880e0fad00b1a811ebc43e39a00ab2"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2924b89b16420712e9bb8192396026a8fbd6d8726224f918353ac19c4c043d2a"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:16aa02e7a0f539098e215fc193c8926c897175d64c7926d00a36188917717a05"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:936a787f83db1f2115ee829dd615c4f684ee48ac4de5779ab4300994d8af325b"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:459d6be6134ce3b38e0ef76f8a672924460c455d45f1ad8fdade36796df1ddc8"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9ee4febb249c591d07b2d4dd36ebcad0ccd128962aaa1801508320896575ef"}, - {file = "pydantic_core-2.16.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:40a0bd0bed96dae5712dab2aba7d334a6c67cbcac2ddfca7dbcc4a8176445990"}, - {file = "pydantic_core-2.16.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:870dbfa94de9b8866b37b867a2cb37a60c401d9deb4a9ea392abf11a1f98037b"}, - {file = "pydantic_core-2.16.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:308974fdf98046db28440eb3377abba274808bf66262e042c412eb2adf852731"}, - {file = "pydantic_core-2.16.2-cp310-none-win32.whl", hash = "sha256:a477932664d9611d7a0816cc3c0eb1f8856f8a42435488280dfbf4395e141485"}, - {file = "pydantic_core-2.16.2-cp310-none-win_amd64.whl", hash = "sha256:8f9142a6ed83d90c94a3efd7af8873bf7cefed2d3d44387bf848888482e2d25f"}, - {file = "pydantic_core-2.16.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:406fac1d09edc613020ce9cf3f2ccf1a1b2f57ab00552b4c18e3d5276c67eb11"}, - {file = "pydantic_core-2.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ce232a6170dd6532096cadbf6185271e4e8c70fc9217ebe105923ac105da9978"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a90fec23b4b05a09ad988e7a4f4e081711a90eb2a55b9c984d8b74597599180f"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8aafeedb6597a163a9c9727d8a8bd363a93277701b7bfd2749fbefee2396469e"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9957433c3a1b67bdd4c63717eaf174ebb749510d5ea612cd4e83f2d9142f3fc8"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b0d7a9165167269758145756db43a133608a531b1e5bb6a626b9ee24bc38a8f7"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dffaf740fe2e147fedcb6b561353a16243e654f7fe8e701b1b9db148242e1272"}, - {file = "pydantic_core-2.16.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f8ed79883b4328b7f0bd142733d99c8e6b22703e908ec63d930b06be3a0e7113"}, - {file = "pydantic_core-2.16.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:cf903310a34e14651c9de056fcc12ce090560864d5a2bb0174b971685684e1d8"}, - {file = "pydantic_core-2.16.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:46b0d5520dbcafea9a8645a8164658777686c5c524d381d983317d29687cce97"}, - {file = "pydantic_core-2.16.2-cp311-none-win32.whl", hash = "sha256:70651ff6e663428cea902dac297066d5c6e5423fda345a4ca62430575364d62b"}, - {file = "pydantic_core-2.16.2-cp311-none-win_amd64.whl", hash = "sha256:98dc6f4f2095fc7ad277782a7c2c88296badcad92316b5a6e530930b1d475ebc"}, - {file = "pydantic_core-2.16.2-cp311-none-win_arm64.whl", hash = "sha256:ef6113cd31411eaf9b39fc5a8848e71c72656fd418882488598758b2c8c6dfa0"}, - {file = "pydantic_core-2.16.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:88646cae28eb1dd5cd1e09605680c2b043b64d7481cdad7f5003ebef401a3039"}, - {file = "pydantic_core-2.16.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7b883af50eaa6bb3299780651e5be921e88050ccf00e3e583b1e92020333304b"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7bf26c2e2ea59d32807081ad51968133af3025c4ba5753e6a794683d2c91bf6e"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:99af961d72ac731aae2a1b55ccbdae0733d816f8bfb97b41909e143de735f522"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02906e7306cb8c5901a1feb61f9ab5e5c690dbbeaa04d84c1b9ae2a01ebe9379"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5362d099c244a2d2f9659fb3c9db7c735f0004765bbe06b99be69fbd87c3f15"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ac426704840877a285d03a445e162eb258924f014e2f074e209d9b4ff7bf380"}, - {file = "pydantic_core-2.16.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b94cbda27267423411c928208e89adddf2ea5dd5f74b9528513f0358bba019cb"}, - {file = "pydantic_core-2.16.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:6db58c22ac6c81aeac33912fb1af0e930bc9774166cdd56eade913d5f2fff35e"}, - {file = "pydantic_core-2.16.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:396fdf88b1b503c9c59c84a08b6833ec0c3b5ad1a83230252a9e17b7dfb4cffc"}, - {file = "pydantic_core-2.16.2-cp312-none-win32.whl", hash = "sha256:7c31669e0c8cc68400ef0c730c3a1e11317ba76b892deeefaf52dcb41d56ed5d"}, - {file = "pydantic_core-2.16.2-cp312-none-win_amd64.whl", hash = "sha256:a3b7352b48fbc8b446b75f3069124e87f599d25afb8baa96a550256c031bb890"}, - {file = "pydantic_core-2.16.2-cp312-none-win_arm64.whl", hash = "sha256:a9e523474998fb33f7c1a4d55f5504c908d57add624599e095c20fa575b8d943"}, - {file = "pydantic_core-2.16.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:ae34418b6b389d601b31153b84dce480351a352e0bb763684a1b993d6be30f17"}, - {file = "pydantic_core-2.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:732bd062c9e5d9582a30e8751461c1917dd1ccbdd6cafb032f02c86b20d2e7ec"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4b52776a2e3230f4854907a1e0946eec04d41b1fc64069ee774876bbe0eab55"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ef551c053692b1e39e3f7950ce2296536728871110e7d75c4e7753fb30ca87f4"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ebb892ed8599b23fa8f1799e13a12c87a97a6c9d0f497525ce9858564c4575a4"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa6c8c582036275997a733427b88031a32ffa5dfc3124dc25a730658c47a572f"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4ba0884a91f1aecce75202473ab138724aa4fb26d7707f2e1fa6c3e68c84fbf"}, - {file = "pydantic_core-2.16.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7924e54f7ce5d253d6160090ddc6df25ed2feea25bfb3339b424a9dd591688bc"}, - {file = "pydantic_core-2.16.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69a7b96b59322a81c2203be537957313b07dd333105b73db0b69212c7d867b4b"}, - {file = "pydantic_core-2.16.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:7e6231aa5bdacda78e96ad7b07d0c312f34ba35d717115f4b4bff6cb87224f0f"}, - {file = "pydantic_core-2.16.2-cp38-none-win32.whl", hash = "sha256:41dac3b9fce187a25c6253ec79a3f9e2a7e761eb08690e90415069ea4a68ff7a"}, - {file = "pydantic_core-2.16.2-cp38-none-win_amd64.whl", hash = "sha256:f685dbc1fdadb1dcd5b5e51e0a378d4685a891b2ddaf8e2bba89bd3a7144e44a"}, - {file = "pydantic_core-2.16.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:55749f745ebf154c0d63d46c8c58594d8894b161928aa41adbb0709c1fe78b77"}, - {file = "pydantic_core-2.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b30b0dd58a4509c3bd7eefddf6338565c4905406aee0c6e4a5293841411a1286"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18de31781cdc7e7b28678df7c2d7882f9692ad060bc6ee3c94eb15a5d733f8f7"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5864b0242f74b9dd0b78fd39db1768bc3f00d1ffc14e596fd3e3f2ce43436a33"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8f9186ca45aee030dc8234118b9c0784ad91a0bb27fc4e7d9d6608a5e3d386c"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cc6f6c9be0ab6da37bc77c2dda5f14b1d532d5dbef00311ee6e13357a418e646"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa057095f621dad24a1e906747179a69780ef45cc8f69e97463692adbcdae878"}, - {file = "pydantic_core-2.16.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6ad84731a26bcfb299f9eab56c7932d46f9cad51c52768cace09e92a19e4cf55"}, - {file = "pydantic_core-2.16.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3b052c753c4babf2d1edc034c97851f867c87d6f3ea63a12e2700f159f5c41c3"}, - {file = "pydantic_core-2.16.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e0f686549e32ccdb02ae6f25eee40cc33900910085de6aa3790effd391ae10c2"}, - {file = "pydantic_core-2.16.2-cp39-none-win32.whl", hash = "sha256:7afb844041e707ac9ad9acad2188a90bffce2c770e6dc2318be0c9916aef1469"}, - {file = "pydantic_core-2.16.2-cp39-none-win_amd64.whl", hash = "sha256:9da90d393a8227d717c19f5397688a38635afec89f2e2d7af0df037f3249c39a"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:5f60f920691a620b03082692c378661947d09415743e437a7478c309eb0e4f82"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:47924039e785a04d4a4fa49455e51b4eb3422d6eaacfde9fc9abf8fdef164e8a"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6294e76b0380bb7a61eb8a39273c40b20beb35e8c87ee101062834ced19c545"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fe56851c3f1d6f5384b3051c536cc81b3a93a73faf931f404fef95217cf1e10d"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9d776d30cde7e541b8180103c3f294ef7c1862fd45d81738d156d00551005784"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:72f7919af5de5ecfaf1eba47bf9a5d8aa089a3340277276e5636d16ee97614d7"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:4bfcbde6e06c56b30668a0c872d75a7ef3025dc3c1823a13cf29a0e9b33f67e8"}, - {file = "pydantic_core-2.16.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ff7c97eb7a29aba230389a2661edf2e9e06ce616c7e35aa764879b6894a44b25"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:9b5f13857da99325dcabe1cc4e9e6a3d7b2e2c726248ba5dd4be3e8e4a0b6d0e"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:a7e41e3ada4cca5f22b478c08e973c930e5e6c7ba3588fb8e35f2398cdcc1545"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:60eb8ceaa40a41540b9acae6ae7c1f0a67d233c40dc4359c256ad2ad85bdf5e5"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7beec26729d496a12fd23cf8da9944ee338c8b8a17035a560b585c36fe81af20"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:22c5f022799f3cd6741e24f0443ead92ef42be93ffda0d29b2597208c94c3753"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:eca58e319f4fd6df004762419612122b2c7e7d95ffafc37e890252f869f3fb2a"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:ed957db4c33bc99895f3a1672eca7e80e8cda8bd1e29a80536b4ec2153fa9804"}, - {file = "pydantic_core-2.16.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:459c0d338cc55d099798618f714b21b7ece17eb1a87879f2da20a3ff4c7628e2"}, - {file = "pydantic_core-2.16.2.tar.gz", hash = "sha256:0ba503850d8b8dcc18391f10de896ae51d37fe5fe43dbfb6a35c5c5cad271a06"}, -] - -[package.dependencies] -typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" - -[[package]] -name = "sniffio" -version = "1.3.0" -description = "Sniff out which async library your code is running under" -optional = false -python-versions = ">=3.7" -files = [ - {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, - {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, -] - -[[package]] -name = "starlette" -version = "0.36.3" -description = "The little ASGI library that shines." -optional = false -python-versions = ">=3.8" -files = [ - {file = "starlette-0.36.3-py3-none-any.whl", hash = "sha256:13d429aa93a61dc40bf503e8c801db1f1bca3dc706b10ef2434a36123568f044"}, - {file = "starlette-0.36.3.tar.gz", hash = "sha256:90a671733cfb35771d8cc605e0b679d23b992f8dcfad48cc60b38cb29aeb7080"}, -] - -[package.dependencies] -anyio = ">=3.4.0,<5" - -[package.extras] -full = ["httpx (>=0.22.0)", "itsdangerous", "jinja2", "python-multipart (>=0.0.7)", "pyyaml"] - -[[package]] -name = "tqdm" -version = "4.66.3" -description = "Fast, Extensible Progress Meter" -optional = false -python-versions = ">=3.7" -files = [ - {file = "tqdm-4.66.3-py3-none-any.whl", hash = "sha256:4f41d54107ff9a223dca80b53efe4fb654c67efaba7f47bada3ee9d50e05bd53"}, - {file = "tqdm-4.66.3.tar.gz", hash = "sha256:23097a41eba115ba99ecae40d06444c15d1c0c698d527a01c6c8bd1c5d0647e5"}, -] - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "typing-extensions" -version = "4.9.0" -description = "Backported and Experimental Type Hints for Python 3.8+" -optional = false -python-versions = ">=3.8" -files = [ - {file = "typing_extensions-4.9.0-py3-none-any.whl", hash = "sha256:af72aea155e91adfc61c3ae9e0e342dbc0cba726d6cba4b6c72c1f34e47291cd"}, - {file = "typing_extensions-4.9.0.tar.gz", hash = "sha256:23478f88c37f27d76ac8aee6c905017a143b0b1b886c3c9f66bc2fd94f9f5783"}, -] - -[[package]] -name = "uvicorn" -version = "0.27.1" -description = "The lightning-fast ASGI server." -optional = false -python-versions = ">=3.8" -files = [ - {file = "uvicorn-0.27.1-py3-none-any.whl", hash = "sha256:5c89da2f3895767472a35556e539fd59f7edbe9b1e9c0e1c99eebeadc61838e4"}, - {file = "uvicorn-0.27.1.tar.gz", hash = "sha256:3d9a267296243532db80c83a959a3400502165ade2c1338dea4e67915fd4745a"}, -] - -[package.dependencies] -click = ">=7.0" -h11 = ">=0.8" -typing-extensions = {version = ">=4.0", markers = "python_version < \"3.11\""} - -[package.extras] -standard = ["colorama (>=0.4)", "httptools (>=0.5.0)", "python-dotenv (>=0.13)", "pyyaml (>=5.1)", "uvloop (>=0.14.0,!=0.15.0,!=0.15.1)", "watchfiles (>=0.13)", "websockets (>=10.4)"] - -[[package]] -name = "wrapt" -version = "1.14.0" -description = "Module for decorators, wrappers and monkey patching." -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" -files = [ - {file = "wrapt-1.14.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:5a9a1889cc01ed2ed5f34574c90745fab1dd06ec2eee663e8ebeefe363e8efd7"}, - {file = "wrapt-1.14.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:9a3ff5fb015f6feb78340143584d9f8a0b91b6293d6b5cf4295b3e95d179b88c"}, - {file = "wrapt-1.14.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:4b847029e2d5e11fd536c9ac3136ddc3f54bc9488a75ef7d040a3900406a91eb"}, - {file = "wrapt-1.14.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:9a5a544861b21e0e7575b6023adebe7a8c6321127bb1d238eb40d99803a0e8bd"}, - {file = "wrapt-1.14.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:88236b90dda77f0394f878324cfbae05ae6fde8a84d548cfe73a75278d760291"}, - {file = "wrapt-1.14.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:f0408e2dbad9e82b4c960274214af533f856a199c9274bd4aff55d4634dedc33"}, - {file = "wrapt-1.14.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:9d8c68c4145041b4eeae96239802cfdfd9ef927754a5be3f50505f09f309d8c6"}, - {file = "wrapt-1.14.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:22626dca56fd7f55a0733e604f1027277eb0f4f3d95ff28f15d27ac25a45f71b"}, - {file = "wrapt-1.14.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:65bf3eb34721bf18b5a021a1ad7aa05947a1767d1aa272b725728014475ea7d5"}, - {file = "wrapt-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:09d16ae7a13cff43660155383a2372b4aa09109c7127aa3f24c3cf99b891c330"}, - {file = "wrapt-1.14.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:debaf04f813ada978d7d16c7dfa16f3c9c2ec9adf4656efdc4defdf841fc2f0c"}, - {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:748df39ed634851350efa87690c2237a678ed794fe9ede3f0d79f071ee042561"}, - {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1807054aa7b61ad8d8103b3b30c9764de2e9d0c0978e9d3fc337e4e74bf25faa"}, - {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763a73ab377390e2af26042f685a26787c402390f682443727b847e9496e4a2a"}, - {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:8529b07b49b2d89d6917cfa157d3ea1dfb4d319d51e23030664a827fe5fd2131"}, - {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:68aeefac31c1f73949662ba8affaf9950b9938b712fb9d428fa2a07e40ee57f8"}, - {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59d7d92cee84a547d91267f0fea381c363121d70fe90b12cd88241bd9b0e1763"}, - {file = "wrapt-1.14.0-cp310-cp310-win32.whl", hash = "sha256:3a88254881e8a8c4784ecc9cb2249ff757fd94b911d5df9a5984961b96113fff"}, - {file = "wrapt-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:9a242871b3d8eecc56d350e5e03ea1854de47b17f040446da0e47dc3e0b9ad4d"}, - {file = "wrapt-1.14.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:a65bffd24409454b889af33b6c49d0d9bcd1a219b972fba975ac935f17bdf627"}, - {file = "wrapt-1.14.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9d9fcd06c952efa4b6b95f3d788a819b7f33d11bea377be6b8980c95e7d10775"}, - {file = "wrapt-1.14.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:db6a0ddc1282ceb9032e41853e659c9b638789be38e5b8ad7498caac00231c23"}, - {file = "wrapt-1.14.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:14e7e2c5f5fca67e9a6d5f753d21f138398cad2b1159913ec9e9a67745f09ba3"}, - {file = "wrapt-1.14.0-cp35-cp35m-win32.whl", hash = "sha256:6d9810d4f697d58fd66039ab959e6d37e63ab377008ef1d63904df25956c7db0"}, - {file = "wrapt-1.14.0-cp35-cp35m-win_amd64.whl", hash = "sha256:d808a5a5411982a09fef6b49aac62986274ab050e9d3e9817ad65b2791ed1425"}, - {file = "wrapt-1.14.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b77159d9862374da213f741af0c361720200ab7ad21b9f12556e0eb95912cd48"}, - {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36a76a7527df8583112b24adc01748cd51a2d14e905b337a6fefa8b96fc708fb"}, - {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0057b5435a65b933cbf5d859cd4956624df37b8bf0917c71756e4b3d9958b9e"}, - {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a0a4ca02752ced5f37498827e49c414d694ad7cf451ee850e3ff160f2bee9d3"}, - {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:8c6be72eac3c14baa473620e04f74186c5d8f45d80f8f2b4eda6e1d18af808e8"}, - {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:21b1106bff6ece8cb203ef45b4f5778d7226c941c83aaaa1e1f0f4f32cc148cd"}, - {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:493da1f8b1bb8a623c16552fb4a1e164c0200447eb83d3f68b44315ead3f9036"}, - {file = "wrapt-1.14.0-cp36-cp36m-win32.whl", hash = "sha256:89ba3d548ee1e6291a20f3c7380c92f71e358ce8b9e48161401e087e0bc740f8"}, - {file = "wrapt-1.14.0-cp36-cp36m-win_amd64.whl", hash = "sha256:729d5e96566f44fccac6c4447ec2332636b4fe273f03da128fff8d5559782b06"}, - {file = "wrapt-1.14.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:891c353e95bb11abb548ca95c8b98050f3620a7378332eb90d6acdef35b401d4"}, - {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23f96134a3aa24cc50614920cc087e22f87439053d886e474638c68c8d15dc80"}, - {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6807bcee549a8cb2f38f73f469703a1d8d5d990815c3004f21ddb68a567385ce"}, - {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6915682f9a9bc4cf2908e83caf5895a685da1fbd20b6d485dafb8e218a338279"}, - {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f2f3bc7cd9c9fcd39143f11342eb5963317bd54ecc98e3650ca22704b69d9653"}, - {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3a71dbd792cc7a3d772ef8cd08d3048593f13d6f40a11f3427c000cf0a5b36a0"}, - {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:5a0898a640559dec00f3614ffb11d97a2666ee9a2a6bad1259c9facd01a1d4d9"}, - {file = "wrapt-1.14.0-cp37-cp37m-win32.whl", hash = "sha256:167e4793dc987f77fd476862d32fa404d42b71f6a85d3b38cbce711dba5e6b68"}, - {file = "wrapt-1.14.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d066ffc5ed0be00cd0352c95800a519cf9e4b5dd34a028d301bdc7177c72daf3"}, - {file = "wrapt-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d9bdfa74d369256e4218000a629978590fd7cb6cf6893251dad13d051090436d"}, - {file = "wrapt-1.14.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2498762814dd7dd2a1d0248eda2afbc3dd9c11537bc8200a4b21789b6df6cd38"}, - {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f24ca7953f2643d59a9c87d6e272d8adddd4a53bb62b9208f36db408d7aafc7"}, - {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b835b86bd5a1bdbe257d610eecab07bf685b1af2a7563093e0e69180c1d4af1"}, - {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b21650fa6907e523869e0396c5bd591cc326e5c1dd594dcdccac089561cacfb8"}, - {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:354d9fc6b1e44750e2a67b4b108841f5f5ea08853453ecbf44c81fdc2e0d50bd"}, - {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1f83e9c21cd5275991076b2ba1cd35418af3504667affb4745b48937e214bafe"}, - {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:61e1a064906ccba038aa3c4a5a82f6199749efbbb3cef0804ae5c37f550eded0"}, - {file = "wrapt-1.14.0-cp38-cp38-win32.whl", hash = "sha256:28c659878f684365d53cf59dc9a1929ea2eecd7ac65da762be8b1ba193f7e84f"}, - {file = "wrapt-1.14.0-cp38-cp38-win_amd64.whl", hash = "sha256:b0ed6ad6c9640671689c2dbe6244680fe8b897c08fd1fab2228429b66c518e5e"}, - {file = "wrapt-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b3f7e671fb19734c872566e57ce7fc235fa953d7c181bb4ef138e17d607dc8a1"}, - {file = "wrapt-1.14.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87fa943e8bbe40c8c1ba4086971a6fefbf75e9991217c55ed1bcb2f1985bd3d4"}, - {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4775a574e9d84e0212f5b18886cace049a42e13e12009bb0491562a48bb2b758"}, - {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9d57677238a0c5411c76097b8b93bdebb02eb845814c90f0b01727527a179e4d"}, - {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00108411e0f34c52ce16f81f1d308a571df7784932cc7491d1e94be2ee93374b"}, - {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d332eecf307fca852d02b63f35a7872de32d5ba8b4ec32da82f45df986b39ff6"}, - {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:01f799def9b96a8ec1ef6b9c1bbaf2bbc859b87545efbecc4a78faea13d0e3a0"}, - {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47045ed35481e857918ae78b54891fac0c1d197f22c95778e66302668309336c"}, - {file = "wrapt-1.14.0-cp39-cp39-win32.whl", hash = "sha256:2eca15d6b947cfff51ed76b2d60fd172c6ecd418ddab1c5126032d27f74bc350"}, - {file = "wrapt-1.14.0-cp39-cp39-win_amd64.whl", hash = "sha256:bb36fbb48b22985d13a6b496ea5fb9bb2a076fea943831643836c9f6febbcfdc"}, - {file = "wrapt-1.14.0.tar.gz", hash = "sha256:8323a43bd9c91f62bb7d4be74cc9ff10090e7ef820e27bfe8815c57e68261311"}, -] - -[metadata] -lock-version = "2.0" -python-versions = "^3.10" -content-hash = "c8fb6fd6f38ed6f69651891f935f962d500e98db1586c37ab7b01271c2aa5607" diff --git a/examples/fastapi_example/pyproject.toml b/examples/fastapi_example/pyproject.toml deleted file mode 100644 index 9a2fc7d3a..000000000 --- a/examples/fastapi_example/pyproject.toml +++ /dev/null @@ -1,19 +0,0 @@ -[tool.poetry] -name = "fastapi-example" -version = "0.1.0" -description = "" -authors = ["ChrisTho23 "] -readme = "README.md" - -[tool.poetry.dependencies] -python = "^3.10" -fastapi = "^0.109.2" -uvicorn = "^0.27.1" -langfuse = "^2.13.3" - -[tool.poetry.scripts] -start = "fastapi_example.main:start" - -[build-system] -requires = ["poetry-core"] -build-backend = "poetry.core.masonry.api" diff --git a/langfuse/_task_manager/ingestion_consumer.py b/langfuse/_task_manager/ingestion_consumer.py index f49893d25..8fdd51db1 100644 --- a/langfuse/_task_manager/ingestion_consumer.py +++ b/langfuse/_task_manager/ingestion_consumer.py @@ -21,8 +21,8 @@ from .media_manager import MediaManager -MAX_EVENT_SIZE_BYTES = int(os.environ.get("LANGFUSE_MAX_EVENT_SIZE_BYTES", 10_000_000)) -MAX_BATCH_SIZE_BYTES = int(os.environ.get("LANGFUSE_MAX_BATCH_SIZE_BYTES", 20_500_000)) +MAX_EVENT_SIZE_BYTES = int(os.environ.get("LANGFUSE_MAX_EVENT_SIZE_BYTES", 20_000_000)) +MAX_BATCH_SIZE_BYTES = int(os.environ.get("LANGFUSE_MAX_BATCH_SIZE_BYTES", 40_500_000)) class IngestionMetadata(pydantic.BaseModel): From 8ed1a6675754bdd9041831609f8995eb0fe098c4 Mon Sep 17 00:00:00 2001 From: bbs-md Date: Mon, 3 Mar 2025 14:41:36 +0200 Subject: [PATCH 3/4] Deleted tests (cherry picked from commit 71c91a9d57e43f09d03db8c7735aaf4f52b4092d) --- tests/__init__.py | 0 tests/api_wrapper.py | 38 - tests/load_test.py | 33 - tests/test_core_sdk.py | 1586 ------------ tests/test_core_sdk_unit.py | 84 - tests/test_datasets.py | 562 ----- tests/test_decorators.py | 1571 ------------ tests/test_error_logging.py | 66 - tests/test_error_parsing.py | 77 - tests/test_extract_model.py | 153 -- tests/test_extract_model_langchain_openai.py | 51 - tests/test_json.py | 139 - tests/test_langchain.py | 2371 ------------------ tests/test_langchain_integration.py | 822 ------ tests/test_llama_index.py | 544 ---- tests/test_llama_index_instrumentation.py | 349 --- tests/test_logger.py | 76 - tests/test_media.py | 172 -- tests/test_openai.py | 1847 -------------- tests/test_prompt.py | 1098 -------- tests/test_prompt_atexit.py | 120 - tests/test_prompt_compilation.py | 183 -- tests/test_sampler.py | 88 - tests/test_sdk_setup.py | 516 ---- tests/test_serializer.py | 191 -- tests/test_singleton.py | 69 - tests/test_task_manager.py | 639 ----- tests/utils.py | 116 - 28 files changed, 13561 deletions(-) delete mode 100644 tests/__init__.py delete mode 100644 tests/api_wrapper.py delete mode 100644 tests/load_test.py delete mode 100644 tests/test_core_sdk_unit.py delete mode 100644 tests/test_datasets.py delete mode 100644 tests/test_decorators.py delete mode 100644 tests/test_error_logging.py delete mode 100644 tests/test_error_parsing.py delete mode 100644 tests/test_extract_model.py delete mode 100644 tests/test_extract_model_langchain_openai.py delete mode 100644 tests/test_json.py delete mode 100644 tests/test_langchain_integration.py delete mode 100644 tests/test_llama_index.py delete mode 100644 tests/test_llama_index_instrumentation.py delete mode 100644 tests/test_logger.py delete mode 100644 tests/test_media.py delete mode 100644 tests/test_prompt.py delete mode 100644 tests/test_prompt_atexit.py delete mode 100644 tests/test_prompt_compilation.py delete mode 100644 tests/test_sampler.py delete mode 100644 tests/test_sdk_setup.py delete mode 100644 tests/test_serializer.py delete mode 100644 tests/test_singleton.py delete mode 100644 tests/test_task_manager.py delete mode 100644 tests/utils.py diff --git a/tests/__init__.py b/tests/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/tests/api_wrapper.py b/tests/api_wrapper.py deleted file mode 100644 index 42f941550..000000000 --- a/tests/api_wrapper.py +++ /dev/null @@ -1,38 +0,0 @@ -import os -from time import sleep - -import httpx - - -class LangfuseAPI: - def __init__(self, username=None, password=None, base_url=None): - username = username if username else os.environ["LANGFUSE_PUBLIC_KEY"] - password = password if password else os.environ["LANGFUSE_SECRET_KEY"] - self.auth = (username, password) - self.BASE_URL = base_url if base_url else os.environ["LANGFUSE_HOST"] - - def get_observation(self, observation_id): - sleep(1) - url = f"{self.BASE_URL}/api/public/observations/{observation_id}" - response = httpx.get(url, auth=self.auth) - return response.json() - - def get_scores(self, page=None, limit=None, user_id=None, name=None): - sleep(1) - params = {"page": page, "limit": limit, "userId": user_id, "name": name} - url = f"{self.BASE_URL}/api/public/scores" - response = httpx.get(url, params=params, auth=self.auth) - return response.json() - - def get_traces(self, page=None, limit=None, user_id=None, name=None): - sleep(1) - params = {"page": page, "limit": limit, "userId": user_id, "name": name} - url = f"{self.BASE_URL}/api/public/traces" - response = httpx.get(url, params=params, auth=self.auth) - return response.json() - - def get_trace(self, trace_id): - sleep(1) - url = f"{self.BASE_URL}/api/public/traces/{trace_id}" - response = httpx.get(url, auth=self.auth) - return response.json() diff --git a/tests/load_test.py b/tests/load_test.py deleted file mode 100644 index 1be62636f..000000000 --- a/tests/load_test.py +++ /dev/null @@ -1,33 +0,0 @@ -# create 5 different trace names -from asyncio import gather -from langfuse.client import Langfuse -from langfuse.utils import _get_timestamp -from tests.utils import create_uuid - - -trace_names = [create_uuid() for _ in range(5)] - -# create 20 different generation names -generation_names = [create_uuid() for _ in range(20)] - -# create 2000 different user ids -user_ids = [create_uuid() for _ in range(2000)] - - -async def execute(): - start = _get_timestamp() - - async def update_generation(i, langfuse: Langfuse): - trace = langfuse.trace(name=trace_names[i % 4], user_id=user_ids[i % 1999]) - # random amount of generations, 1-10 - for _ in range(i % 10): - generation = trace.generation(name=generation_names[i % 19]) - generation.update(metadata={"count": str(i)}) - - langfuse = Langfuse(debug=False, threads=100) - print("start") - await gather(*(update_generation(i, langfuse) for i in range(100_000))) - print("flush") - langfuse.flush() - diff = _get_timestamp() - start - print(diff) diff --git a/tests/test_core_sdk.py b/tests/test_core_sdk.py index 38aea9a7a..e69de29bb 100644 --- a/tests/test_core_sdk.py +++ b/tests/test_core_sdk.py @@ -1,1586 +0,0 @@ -import os -import time -from asyncio import gather -from datetime import datetime, timedelta, timezone -from time import sleep - -import pytest - -from langfuse import Langfuse -from langfuse.client import ( - FetchObservationResponse, - FetchObservationsResponse, - FetchSessionsResponse, - FetchTraceResponse, - FetchTracesResponse, -) -from langfuse.utils import _get_timestamp -from tests.api_wrapper import LangfuseAPI -from tests.utils import ( - CompletionUsage, - LlmUsage, - LlmUsageWithCost, - create_uuid, - get_api, -) - - -@pytest.mark.asyncio -async def test_concurrency(): - start = _get_timestamp() - - async def update_generation(i, langfuse: Langfuse): - trace = langfuse.trace(name=str(i)) - generation = trace.generation(name=str(i)) - generation.update(metadata={"count": str(i)}) - - langfuse = Langfuse(debug=False, threads=5) - print("start") - await gather(*(update_generation(i, langfuse) for i in range(100))) - print("flush") - langfuse.flush() - diff = _get_timestamp() - start - print(diff) - - api = get_api() - for i in range(100): - observation = api.observations.get_many(name=str(i)).data[0] - assert observation.name == str(i) - assert observation.metadata == {"count": i} - - -def test_flush(): - # set up the consumer with more requests than a single batch will allow - langfuse = Langfuse(debug=False) - - for i in range(2): - langfuse.trace( - name=str(i), - ) - - langfuse.flush() - # Make sure that the client queue is empty after flushing - assert langfuse.task_manager._ingestion_queue.empty() - - -def test_shutdown(): - langfuse = Langfuse(debug=False) - - for i in range(2): - langfuse.trace( - name=str(i), - ) - - langfuse.shutdown() - # we expect two things after shutdown: - # 1. client queue is empty - # 2. consumer thread has stopped - assert langfuse.task_manager._ingestion_queue.empty() - - -def test_invalid_score_data_does_not_raise_exception(): - langfuse = Langfuse(debug=False) - - trace = langfuse.trace( - name="this-is-so-great-new", - user_id="test", - metadata="test", - ) - - langfuse.flush() - assert langfuse.task_manager._ingestion_queue.qsize() == 0 - - score_id = create_uuid() - - langfuse.score( - id=score_id, - trace_id=trace.id, - name="this-is-a-score", - value=-1, - data_type="BOOLEAN", - ) - - langfuse.flush() - assert langfuse.task_manager._ingestion_queue.qsize() == 0 - - -def test_create_numeric_score(): - langfuse = Langfuse(debug=False) - api_wrapper = LangfuseAPI() - - trace = langfuse.trace( - name="this-is-so-great-new", - user_id="test", - metadata="test", - ) - - langfuse.flush() - assert langfuse.task_manager._ingestion_queue.qsize() == 0 - - score_id = create_uuid() - - langfuse.score( - id=score_id, - trace_id=trace.id, - name="this-is-a-score", - value=1, - ) - - trace.generation(name="yet another child", metadata="test") - - langfuse.flush() - - assert langfuse.task_manager._ingestion_queue.qsize() == 0 - - trace = api_wrapper.get_trace(trace.id) - - assert trace["scores"][0]["id"] == score_id - assert trace["scores"][0]["value"] == 1 - assert trace["scores"][0]["dataType"] == "NUMERIC" - assert trace["scores"][0]["stringValue"] is None - - -def test_create_boolean_score(): - langfuse = Langfuse(debug=False) - api_wrapper = LangfuseAPI() - - trace = langfuse.trace( - name="this-is-so-great-new", - user_id="test", - metadata="test", - ) - - langfuse.flush() - assert langfuse.task_manager._ingestion_queue.qsize() == 0 - - score_id = create_uuid() - - langfuse.score( - id=score_id, - trace_id=trace.id, - name="this-is-a-score", - value=1, - data_type="BOOLEAN", - ) - - trace.generation(name="yet another child", metadata="test") - - langfuse.flush() - - assert langfuse.task_manager._ingestion_queue.qsize() == 0 - - trace = api_wrapper.get_trace(trace.id) - - assert trace["scores"][0]["id"] == score_id - assert trace["scores"][0]["dataType"] == "BOOLEAN" - assert trace["scores"][0]["value"] == 1 - assert trace["scores"][0]["stringValue"] == "True" - - -def test_create_categorical_score(): - langfuse = Langfuse(debug=False) - api_wrapper = LangfuseAPI() - - trace = langfuse.trace( - name="this-is-so-great-new", - user_id="test", - metadata="test", - ) - - langfuse.flush() - assert langfuse.task_manager._ingestion_queue.qsize() == 0 - - score_id = create_uuid() - - langfuse.score( - id=score_id, - trace_id=trace.id, - name="this-is-a-score", - value="high score", - ) - - trace.generation(name="yet another child", metadata="test") - - langfuse.flush() - - assert langfuse.task_manager._ingestion_queue.qsize() == 0 - - trace = api_wrapper.get_trace(trace.id) - - assert trace["scores"][0]["id"] == score_id - assert trace["scores"][0]["dataType"] == "CATEGORICAL" - assert trace["scores"][0]["value"] == 0 - assert trace["scores"][0]["stringValue"] == "high score" - - -def test_create_trace(): - langfuse = Langfuse(debug=False) - trace_name = create_uuid() - - trace = langfuse.trace( - name=trace_name, - user_id="test", - metadata={"key": "value"}, - tags=["tag1", "tag2"], - public=True, - ) - - langfuse.flush() - sleep(2) - - trace = LangfuseAPI().get_trace(trace.id) - - assert trace["name"] == trace_name - assert trace["userId"] == "test" - assert trace["metadata"] == {"key": "value"} - assert trace["tags"] == ["tag1", "tag2"] - assert trace["public"] is True - assert True if not trace["externalId"] else False - - -def test_create_update_trace(): - langfuse = Langfuse() - - trace_name = create_uuid() - - trace = langfuse.trace( - name=trace_name, - user_id="test", - metadata={"key": "value"}, - public=True, - ) - sleep(1) - trace.update(metadata={"key2": "value2"}, public=False) - - langfuse.flush() - - trace = get_api().trace.get(trace.id) - - assert trace.name == trace_name - assert trace.user_id == "test" - assert trace.metadata == {"key": "value", "key2": "value2"} - assert trace.public is False - - -def test_create_generation(): - langfuse = Langfuse(debug=True) - - timestamp = _get_timestamp() - generation_id = create_uuid() - langfuse.generation( - id=generation_id, - name="query-generation", - start_time=timestamp, - end_time=timestamp, - model="gpt-3.5-turbo-0125", - model_parameters={ - "max_tokens": "1000", - "temperature": "0.9", - "stop": ["user-1", "user-2"], - }, - input=[ - {"role": "system", "content": "You are a helpful assistant."}, - { - "role": "user", - "content": "Please generate the start of a company documentation that contains the answer to the questinon: Write a summary of the Q3 OKR goals", - }, - ], - output="This document entails the OKR goals for ACME", - usage=LlmUsage(promptTokens=50, completionTokens=49), - metadata={"interface": "whatsapp"}, - level="DEBUG", - ) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.name == "query-generation" - assert trace.user_id is None - assert trace.metadata == {} - - assert len(trace.observations) == 1 - - generation = trace.observations[0] - - assert generation.id == generation_id - assert generation.name == "query-generation" - assert generation.start_time is not None - assert generation.end_time is not None - assert generation.model == "gpt-3.5-turbo-0125" - assert generation.model_parameters == { - "max_tokens": "1000", - "temperature": "0.9", - "stop": ["user-1", "user-2"], - } - assert generation.input == [ - {"role": "system", "content": "You are a helpful assistant."}, - { - "role": "user", - "content": "Please generate the start of a company documentation that contains the answer to the questinon: Write a summary of the Q3 OKR goals", - }, - ] - assert generation.output == "This document entails the OKR goals for ACME" - assert generation.level == "DEBUG" - - -@pytest.mark.parametrize( - "usage, expected_usage, expected_input_cost, expected_output_cost, expected_total_cost", - [ - ( - CompletionUsage(prompt_tokens=51, completion_tokens=0, total_tokens=100), - "TOKENS", - None, - None, - None, - ), - ( - LlmUsage(promptTokens=51, completionTokens=0, totalTokens=100), - "TOKENS", - None, - None, - None, - ), - ( - { - "input": 51, - "output": 0, - "total": 100, - "unit": "TOKENS", - "input_cost": 100, - "output_cost": 200, - "total_cost": 300, - }, - "TOKENS", - 100, - 200, - 300, - ), - ( - { - "input": 51, - "output": 0, - "total": 100, - "unit": "CHARACTERS", - "input_cost": 100, - "output_cost": 200, - "total_cost": 300, - }, - "CHARACTERS", - 100, - 200, - 300, - ), - ( - LlmUsageWithCost( - promptTokens=51, - completionTokens=0, - totalTokens=100, - inputCost=100, - outputCost=200, - totalCost=300, - ), - "TOKENS", - 100, - 200, - 300, - ), - ], -) -def test_create_generation_complex( - usage, - expected_usage, - expected_input_cost, - expected_output_cost, - expected_total_cost, -): - langfuse = Langfuse(debug=False) - - generation_id = create_uuid() - langfuse.generation( - id=generation_id, - name="query-generation", - input=[ - {"role": "system", "content": "You are a helpful assistant."}, - { - "role": "user", - "content": "Please generate the start of a company documentation that contains the answer to the questinon: Write a summary of the Q3 OKR goals", - }, - ], - output=[{"foo": "bar"}], - usage=usage, - metadata=[{"tags": ["yo"]}], - ) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.name == "query-generation" - assert trace.user_id is None - assert trace.metadata == {} - - assert len(trace.observations) == 1 - - generation = trace.observations[0] - - assert generation.id == generation_id - assert generation.name == "query-generation" - assert generation.input == [ - {"role": "system", "content": "You are a helpful assistant."}, - { - "role": "user", - "content": "Please generate the start of a company documentation that contains the answer to the questinon: Write a summary of the Q3 OKR goals", - }, - ] - assert generation.output == [{"foo": "bar"}] - assert generation.metadata["metadata"] == [{"tags": ["yo"]}] - assert generation.start_time is not None - assert generation.usage_details == {"input": 51, "output": 0, "total": 100} - assert generation.cost_details == ( - { - "input": expected_input_cost, - "output": expected_output_cost, - "total": expected_total_cost, - } - if any([expected_input_cost, expected_output_cost, expected_total_cost]) - else {} - ) - - -def test_create_span(): - langfuse = Langfuse(debug=False) - - timestamp = _get_timestamp() - span_id = create_uuid() - langfuse.span( - id=span_id, - name="span", - start_time=timestamp, - end_time=timestamp, - input={"key": "value"}, - output={"key": "value"}, - metadata={"interface": "whatsapp"}, - ) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.name == "span" - assert trace.user_id is None - assert trace.metadata == {} - - assert len(trace.observations) == 1 - - span = trace.observations[0] - - assert span.id == span_id - assert span.name == "span" - assert span.start_time is not None - assert span.end_time is not None - assert span.input == {"key": "value"} - assert span.output == {"key": "value"} - assert span.start_time is not None - - -def test_score_trace(): - langfuse = Langfuse(debug=False) - api_wrapper = LangfuseAPI() - - trace_name = create_uuid() - - trace = langfuse.trace(name=trace_name) - - langfuse.score( - trace_id=langfuse.get_trace_id(), - name="valuation", - value=0.5, - comment="This is a comment", - ) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - assert trace["name"] == trace_name - - assert len(trace["scores"]) == 1 - - score = trace["scores"][0] - - assert score["name"] == "valuation" - assert score["value"] == 0.5 - assert score["comment"] == "This is a comment" - assert score["observationId"] is None - assert score["dataType"] == "NUMERIC" - - -def test_score_trace_nested_trace(): - langfuse = Langfuse(debug=False) - - trace_name = create_uuid() - - trace = langfuse.trace(name=trace_name) - - trace.score( - name="valuation", - value=0.5, - comment="This is a comment", - ) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.name == trace_name - - assert len(trace.scores) == 1 - - score = trace.scores[0] - - assert score.name == "valuation" - assert score.value == 0.5 - assert score.comment == "This is a comment" - assert score.observation_id is None - assert score.data_type == "NUMERIC" - - -def test_score_trace_nested_observation(): - langfuse = Langfuse(debug=False) - - trace_name = create_uuid() - - trace = langfuse.trace(name=trace_name) - span = trace.span(name="span") - - span.score( - name="valuation", - value=0.5, - comment="This is a comment", - ) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.name == trace_name - - assert len(trace.scores) == 1 - - score = trace.scores[0] - - assert score.name == "valuation" - assert score.value == 0.5 - assert score.comment == "This is a comment" - assert score.observation_id == span.id - assert score.data_type == "NUMERIC" - - -def test_score_span(): - langfuse = Langfuse(debug=False) - api_wrapper = LangfuseAPI() - - spanId = create_uuid() - timestamp = _get_timestamp() - langfuse.span( - id=spanId, - name="span", - start_time=timestamp, - end_time=timestamp, - input={"key": "value"}, - output={"key": "value"}, - metadata={"interface": "whatsapp"}, - ) - - langfuse.score( - trace_id=langfuse.get_trace_id(), - observation_id=spanId, - name="valuation", - value=1, - comment="This is a comment", - ) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - assert len(trace["scores"]) == 1 - assert len(trace["observations"]) == 1 - - score = trace["scores"][0] - - assert score["name"] == "valuation" - assert score["value"] == 1 - assert score["comment"] == "This is a comment" - assert score["observationId"] == spanId - assert score["dataType"] == "NUMERIC" - - -def test_create_trace_and_span(): - langfuse = Langfuse(debug=False) - - trace_name = create_uuid() - spanId = create_uuid() - - trace = langfuse.trace(name=trace_name) - trace.span(id=spanId, name="span") - - langfuse.flush() - - trace = get_api().trace.get(trace.id) - - assert trace.name == trace_name - assert len(trace.observations) == 1 - - span = trace.observations[0] - assert span.name == "span" - assert span.trace_id == trace.id - assert span.start_time is not None - - -def test_create_trace_and_generation(): - langfuse = Langfuse(debug=False) - - trace_name = create_uuid() - generationId = create_uuid() - - trace = langfuse.trace( - name=trace_name, input={"key": "value"}, session_id="test-session-id" - ) - trace.generation( - id=generationId, - name="generation", - start_time=datetime.now(), - end_time=datetime.now(), - ) - - langfuse.flush() - - dbTrace = get_api().trace.get(trace.id) - getTrace = langfuse.get_trace(trace.id) - - assert dbTrace.name == trace_name - assert len(dbTrace.observations) == 1 - assert getTrace.name == trace_name - assert len(getTrace.observations) == 1 - assert getTrace.session_id == "test-session-id" - - generation = getTrace.observations[0] - assert generation.name == "generation" - assert generation.trace_id == getTrace.id - assert generation.start_time is not None - assert getTrace.input == {"key": "value"} - - -def backwards_compatibility_sessionId(): - langfuse = Langfuse(debug=False) - - trace = langfuse.trace(name="test", sessionId="test-sessionId") - - langfuse.flush() - - trace = get_api().trace.get(trace.id) - - assert trace.name == "test" - assert trace.session_id == "test-sessionId" - - -def test_create_trace_with_manual_timestamp(): - langfuse = Langfuse(debug=False) - api_wrapper = LangfuseAPI() - - trace_name = create_uuid() - trace_id = create_uuid() - timestamp = _get_timestamp() - - langfuse.trace(id=trace_id, name=trace_name, timestamp=timestamp) - - langfuse.flush() - - trace = api_wrapper.get_trace(trace_id) - - assert trace["name"] == trace_name - assert trace["id"] == trace_id - assert str(trace["timestamp"]).find(timestamp.isoformat()[0:23]) != -1 - - -def test_create_generation_and_trace(): - langfuse = Langfuse(debug=False) - api_wrapper = LangfuseAPI() - - trace_name = create_uuid() - trace_id = create_uuid() - - langfuse.generation(trace_id=trace_id, name="generation") - langfuse.trace(id=trace_id, name=trace_name) - - langfuse.flush() - sleep(2) - - trace = api_wrapper.get_trace(trace_id) - - assert trace["name"] == trace_name - assert len(trace["observations"]) == 1 - - span = trace["observations"][0] - assert span["name"] == "generation" - assert span["traceId"] == trace["id"] - - -def test_create_span_and_get_observation(): - langfuse = Langfuse(debug=False) - - span_id = create_uuid() - langfuse.span(id=span_id, name="span") - langfuse.flush() - - sleep(2) - observation = langfuse.get_observation(span_id) - assert observation.name == "span" - assert observation.id == span_id - - -def test_update_generation(): - langfuse = Langfuse(debug=False) - - start = _get_timestamp() - - generation = langfuse.generation(name="generation") - generation.update(start_time=start, metadata={"dict": "value"}) - - langfuse.flush() - - trace = get_api().trace.get(generation.trace_id) - - assert trace.name == "generation" - assert len(trace.observations) == 1 - retrieved_generation = trace.observations[0] - assert retrieved_generation.name == "generation" - assert retrieved_generation.trace_id == generation.trace_id - assert retrieved_generation.metadata == {"dict": "value"} - assert start.replace( - microsecond=0, tzinfo=timezone.utc - ) == retrieved_generation.start_time.replace(microsecond=0) - - -def test_update_span(): - langfuse = Langfuse(debug=False) - - span = langfuse.span(name="span") - span.update(metadata={"dict": "value"}) - - langfuse.flush() - - trace = get_api().trace.get(span.trace_id) - - assert trace.name == "span" - assert len(trace.observations) == 1 - - retrieved_span = trace.observations[0] - assert retrieved_span.name == "span" - assert retrieved_span.trace_id == span.trace_id - assert retrieved_span.metadata == {"dict": "value"} - - -def test_create_event(): - langfuse = Langfuse(debug=False) - - event = langfuse.event(name="event") - - langfuse.flush() - - observation = get_api().observations.get(event.id) - - assert observation.type == "EVENT" - assert observation.name == "event" - - -def test_create_trace_and_event(): - langfuse = Langfuse(debug=False) - - trace_name = create_uuid() - eventId = create_uuid() - - trace = langfuse.trace(name=trace_name) - trace.event(id=eventId, name="event") - - langfuse.flush() - - trace = get_api().trace.get(trace.id) - - assert trace.name == trace_name - assert len(trace.observations) == 1 - - span = trace.observations[0] - assert span.name == "event" - assert span.trace_id == trace.id - assert span.start_time is not None - - -def test_create_span_and_generation(): - langfuse = Langfuse(debug=False) - - span = langfuse.span(name="span") - langfuse.generation(trace_id=span.trace_id, name="generation") - - langfuse.flush() - - trace = get_api().trace.get(span.trace_id) - - assert trace.name == "span" - assert len(trace.observations) == 2 - - span = trace.observations[0] - assert span.trace_id == trace.id - - span = trace.observations[1] - assert span.trace_id == trace.id - - -def test_create_trace_with_id_and_generation(): - langfuse = Langfuse(debug=False) - api_wrapper = LangfuseAPI() - - trace_name = create_uuid() - trace_id = create_uuid() - - trace = langfuse.trace(id=trace_id, name=trace_name) - trace.generation(name="generation") - - langfuse.flush() - - trace = api_wrapper.get_trace(trace_id) - - assert trace["name"] == trace_name - assert trace["id"] == trace_id - assert len(trace["observations"]) == 1 - - span = trace["observations"][0] - assert span["name"] == "generation" - assert span["traceId"] == trace["id"] - - -def test_end_generation(): - langfuse = Langfuse() - api_wrapper = LangfuseAPI() - - timestamp = _get_timestamp() - generation = langfuse.generation( - name="query-generation", - start_time=timestamp, - model="gpt-3.5-turbo", - model_parameters={"max_tokens": "1000", "temperature": "0.9"}, - input=[ - {"role": "system", "content": "You are a helpful assistant."}, - { - "role": "user", - "content": "Please generate the start of a company documentation that contains the answer to the questinon: Write a summary of the Q3 OKR goals", - }, - ], - output="This document entails the OKR goals for ACME", - metadata={"interface": "whatsapp"}, - ) - - generation.end() - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - span = trace["observations"][0] - assert span["endTime"] is not None - - -def test_end_generation_with_data(): - langfuse = Langfuse() - trace = langfuse.trace() - - generation = trace.generation( - name="query-generation", - ) - - generation.end( - name="test_generation_end", - metadata={"dict": "value"}, - level="ERROR", - status_message="Generation ended", - version="1.0", - completion_start_time=datetime(2023, 1, 1, 12, 3, tzinfo=timezone.utc), - model="test-model", - model_parameters={"param1": "value1", "param2": "value2"}, - input=[{"test_input_key": "test_input_value"}], - output={"test_output_key": "test_output_value"}, - usage={ - "input": 100, - "output": 200, - "total": 500, - "unit": "CHARACTERS", - "input_cost": 111, - "output_cost": 222, - "total_cost": 444, - }, - ) - - langfuse.flush() - - fetched_trace = get_api().trace.get(trace.id) - - generation = fetched_trace.observations[0] - assert generation.completion_start_time == datetime( - 2023, 1, 1, 12, 3, tzinfo=timezone.utc - ) - assert generation.name == "test_generation_end" - assert generation.metadata == {"dict": "value"} - assert generation.level == "ERROR" - assert generation.status_message == "Generation ended" - assert generation.version == "1.0" - assert generation.model == "test-model" - assert generation.model_parameters == {"param1": "value1", "param2": "value2"} - assert generation.input == [{"test_input_key": "test_input_value"}] - assert generation.output == {"test_output_key": "test_output_value"} - assert generation.usage.input == 100 - assert generation.usage.output == 200 - assert generation.usage.total == 500 - assert generation.calculated_input_cost == 111 - assert generation.calculated_output_cost == 222 - assert generation.calculated_total_cost == 444 - - -def test_end_generation_with_openai_token_format(): - langfuse = Langfuse() - - generation = langfuse.generation( - name="query-generation", - ) - - generation.end( - usage={ - "prompt_tokens": 100, - "completion_tokens": 200, - "total_tokens": 500, - "input_cost": 111, - "output_cost": 222, - "total_cost": 444, - }, - ) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = get_api().trace.get(trace_id) - print(trace.observations[0]) - - generation = trace.observations[0] - assert generation.end_time is not None - assert generation.usage.input == 100 - assert generation.usage.output == 200 - assert generation.usage.total == 500 - assert generation.usage.unit == "TOKENS" - assert generation.calculated_input_cost == 111 - assert generation.calculated_output_cost == 222 - assert generation.calculated_total_cost == 444 - - -def test_end_span(): - langfuse = Langfuse() - api_wrapper = LangfuseAPI() - - timestamp = _get_timestamp() - span = langfuse.span( - name="span", - start_time=timestamp, - input={"key": "value"}, - output={"key": "value"}, - metadata={"interface": "whatsapp"}, - ) - - span.end() - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - span = trace["observations"][0] - assert span["endTime"] is not None - - -def test_end_span_with_data(): - langfuse = Langfuse() - - timestamp = _get_timestamp() - span = langfuse.span( - name="span", - start_time=timestamp, - input={"key": "value"}, - output={"key": "value"}, - metadata={"interface": "whatsapp"}, - ) - - span.end(metadata={"dict": "value"}) - - langfuse.flush() - - trace_id = langfuse.get_trace_id() - - trace = get_api().trace.get(trace_id) - - span = trace.observations[0] - assert span.end_time is not None - assert span.metadata == {"dict": "value", "interface": "whatsapp"} - - -def test_get_generations(): - langfuse = Langfuse(debug=False) - - timestamp = _get_timestamp() - - langfuse.generation( - name=create_uuid(), - start_time=timestamp, - end_time=timestamp, - ) - - generation_name = create_uuid() - - langfuse.generation( - name=generation_name, - start_time=timestamp, - end_time=timestamp, - input="great-prompt", - output="great-completion", - ) - - langfuse.flush() - - sleep(1) - generations = langfuse.get_generations(name=generation_name, limit=10, page=1) - - assert len(generations.data) == 1 - assert generations.data[0].name == generation_name - assert generations.data[0].input == "great-prompt" - assert generations.data[0].output == "great-completion" - - -def test_get_generations_by_user(): - langfuse = Langfuse(debug=False) - - timestamp = _get_timestamp() - - user_id = create_uuid() - generation_name = create_uuid() - trace = langfuse.trace(name="test-user", user_id=user_id) - - trace.generation( - name=generation_name, - start_time=timestamp, - end_time=timestamp, - input="great-prompt", - output="great-completion", - ) - - langfuse.generation( - start_time=timestamp, - end_time=timestamp, - ) - - langfuse.flush() - sleep(1) - - generations = langfuse.get_generations(limit=10, page=1, user_id=user_id) - - assert len(generations.data) == 1 - assert generations.data[0].name == generation_name - assert generations.data[0].input == "great-prompt" - assert generations.data[0].output == "great-completion" - - -def test_kwargs(): - langfuse = Langfuse() - - timestamp = _get_timestamp() - - dict = { - "start_time": timestamp, - "input": {"key": "value"}, - "output": {"key": "value"}, - "metadata": {"interface": "whatsapp"}, - } - - span = langfuse.span( - name="span", - **dict, - ) - - langfuse.flush() - - observation = get_api().observations.get(span.id) - assert observation.start_time is not None - assert observation.input == {"key": "value"} - assert observation.output == {"key": "value"} - assert observation.metadata == {"interface": "whatsapp"} - - -def test_timezone_awareness(): - os.environ["TZ"] = "US/Pacific" - time.tzset() - - utc_now = datetime.now(timezone.utc) - assert utc_now.tzinfo is not None - - langfuse = Langfuse(debug=False) - - trace = langfuse.trace(name="test") - span = trace.span(name="span") - span.end() - generation = trace.generation(name="generation") - generation.end() - trace.event(name="event") - - langfuse.flush() - - trace = get_api().trace.get(trace.id) - - assert len(trace.observations) == 3 - for observation in trace.observations: - delta = observation.start_time - utc_now - assert delta.seconds < 5 - - if observation.type != "EVENT": - delta = observation.end_time - utc_now - assert delta.seconds < 5 - - os.environ["TZ"] = "UTC" - time.tzset() - - -def test_timezone_awareness_setting_timestamps(): - os.environ["TZ"] = "US/Pacific" - time.tzset() - - now = datetime.now() - utc_now = datetime.now(timezone.utc) - assert utc_now.tzinfo is not None - - print(now) - print(utc_now) - - langfuse = Langfuse(debug=False) - - trace = langfuse.trace(name="test") - trace.span(name="span", start_time=now, end_time=now) - trace.generation(name="generation", start_time=now, end_time=now) - trace.event(name="event", start_time=now) - - langfuse.flush() - - trace = get_api().trace.get(trace.id) - - assert len(trace.observations) == 3 - for observation in trace.observations: - delta = utc_now - observation.start_time - assert delta.seconds < 5 - - if observation.type != "EVENT": - delta = utc_now - observation.end_time - assert delta.seconds < 5 - - -def test_get_trace_by_session_id(): - langfuse = Langfuse(debug=False) - - # Create a trace with a session_id - trace_name = create_uuid() - session_id = create_uuid() - trace = langfuse.trace(name=trace_name, session_id=session_id) - - # create a trace without a session_id - langfuse.trace(name=create_uuid()) - - langfuse.flush() - - # Retrieve the trace using the session_id - traces = get_api().trace.list(session_id=session_id) - - # Verify that the trace was retrieved correctly - assert len(traces.data) == 1 - retrieved_trace = traces.data[0] - assert retrieved_trace.name == trace_name - assert retrieved_trace.session_id == session_id - assert retrieved_trace.id == trace.id - - -def test_fetch_trace(): - langfuse = Langfuse() - - # Create a trace - name = create_uuid() - trace = langfuse.trace(name=name) - langfuse.flush() - - # Fetch the trace - sleep(1) - response = langfuse.fetch_trace(trace.id) - - # Assert the structure of the response - assert isinstance(response, FetchTraceResponse) - assert hasattr(response, "data") - assert response.data.id == trace.id - assert response.data.name == name - - -def test_fetch_traces(): - langfuse = Langfuse() - - # unique name - name = create_uuid() - - # Create 3 traces with different timestamps - now = datetime.now() - trace_params = [ - {"id": create_uuid(), "timestamp": now - timedelta(seconds=10)}, - {"id": create_uuid(), "timestamp": now - timedelta(seconds=5)}, - {"id": create_uuid(), "timestamp": now}, - ] - - for trace_param in trace_params: - langfuse.trace( - id=trace_param["id"], - name=name, - session_id="session-1", - input={"key": "value"}, - output="output-value", - timestamp=trace_param["timestamp"], - ) - langfuse.flush() - sleep(1) - - all_traces = langfuse.fetch_traces(limit=10, name=name) - assert len(all_traces.data) == 3 - assert all_traces.meta.total_items == 3 - - # Assert the structure of the response - assert isinstance(all_traces, FetchTracesResponse) - assert hasattr(all_traces, "data") - assert hasattr(all_traces, "meta") - assert isinstance(all_traces.data, list) - assert all_traces.data[0].name == name - assert all_traces.data[0].session_id == "session-1" - - # Fetch traces with a time range that should only include the middle trace - from_timestamp = now - timedelta(seconds=7.5) - to_timestamp = now - timedelta(seconds=2.5) - response = langfuse.fetch_traces( - limit=10, name=name, from_timestamp=from_timestamp, to_timestamp=to_timestamp - ) - assert len(response.data) == 1 - assert response.meta.total_items == 1 - fetched_trace = response.data[0] - assert fetched_trace.name == name - assert fetched_trace.session_id == "session-1" - assert fetched_trace.input == {"key": "value"} - assert fetched_trace.output == "output-value" - # compare timestamps without microseconds and in UTC - assert fetched_trace.timestamp.replace(microsecond=0) == trace_params[1][ - "timestamp" - ].replace(microsecond=0).astimezone(timezone.utc) - - # Fetch with pagination - paginated_response = langfuse.fetch_traces(limit=1, page=2, name=name) - assert len(paginated_response.data) == 1 - assert paginated_response.meta.total_items == 3 - assert paginated_response.meta.total_pages == 3 - - -def test_fetch_observation(): - langfuse = Langfuse() - - # Create a trace and a generation - name = create_uuid() - trace = langfuse.trace(name=name) - generation = trace.generation(name=name) - langfuse.flush() - sleep(1) - - # Fetch the observation - response = langfuse.fetch_observation(generation.id) - - # Assert the structure of the response - assert isinstance(response, FetchObservationResponse) - assert hasattr(response, "data") - assert response.data.id == generation.id - assert response.data.name == name - assert response.data.type == "GENERATION" - - -def test_fetch_observations(): - langfuse = Langfuse() - - # Create a trace with multiple generations - name = create_uuid() - trace = langfuse.trace(name=name) - gen1 = trace.generation(name=name) - gen2 = trace.generation(name=name) - langfuse.flush() - sleep(1) - - # Fetch observations - response = langfuse.fetch_observations(limit=10, name=name) - - # Assert the structure of the response - assert isinstance(response, FetchObservationsResponse) - assert hasattr(response, "data") - assert hasattr(response, "meta") - assert isinstance(response.data, list) - assert len(response.data) == 2 - assert response.meta.total_items == 2 - assert response.data[0].id in [gen1.id, gen2.id] - - # fetch only one - response = langfuse.fetch_observations(limit=1, page=2, name=name) - assert len(response.data) == 1 - assert response.meta.total_items == 2 - assert response.meta.total_pages == 2 - - -def test_fetch_trace_not_found(): - langfuse = Langfuse() - - # Attempt to fetch a non-existent trace - with pytest.raises(Exception): - langfuse.fetch_trace(create_uuid()) - - -def test_fetch_observation_not_found(): - langfuse = Langfuse() - - # Attempt to fetch a non-existent observation - with pytest.raises(Exception): - langfuse.fetch_observation(create_uuid()) - - -def test_fetch_traces_empty(): - langfuse = Langfuse() - - # Fetch traces with a filter that should return no results - response = langfuse.fetch_traces(name=create_uuid()) - - assert isinstance(response, FetchTracesResponse) - assert len(response.data) == 0 - assert response.meta.total_items == 0 - - -def test_fetch_observations_empty(): - langfuse = Langfuse() - - # Fetch observations with a filter that should return no results - response = langfuse.fetch_observations(name=create_uuid()) - - assert isinstance(response, FetchObservationsResponse) - assert len(response.data) == 0 - assert response.meta.total_items == 0 - - -def test_fetch_sessions(): - langfuse = Langfuse() - - # unique name - name = create_uuid() - session1 = create_uuid() - session2 = create_uuid() - session3 = create_uuid() - - # Create multiple traces - langfuse.trace(name=name, session_id=session1) - langfuse.trace(name=name, session_id=session2) - langfuse.trace(name=name, session_id=session3) - langfuse.flush() - - # Fetch traces - sleep(3) - response = langfuse.fetch_sessions() - - # Assert the structure of the response, cannot check for the exact number of sessions as the table is not cleared between tests - assert isinstance(response, FetchSessionsResponse) - assert hasattr(response, "data") - assert hasattr(response, "meta") - assert isinstance(response.data, list) - - # fetch only one, cannot check for the exact number of sessions as the table is not cleared between tests - response = langfuse.fetch_sessions(limit=1, page=2) - assert len(response.data) == 1 - - -def test_create_trace_sampling_zero(): - langfuse = Langfuse(debug=True, sample_rate=0) - api_wrapper = LangfuseAPI() - trace_name = create_uuid() - - trace = langfuse.trace( - name=trace_name, - user_id="test", - metadata={"key": "value"}, - tags=["tag1", "tag2"], - public=True, - ) - - trace.generation(name="generation") - trace.score(name="score", value=0.5) - - langfuse.flush() - - fetched_trace = api_wrapper.get_trace(trace.id) - assert fetched_trace == { - "error": "LangfuseNotFoundError", - "message": f"Trace {trace.id} not found within authorized project", - } - - -def test_mask_function(): - def mask_func(data): - if isinstance(data, dict): - return {k: "MASKED" for k in data} - elif isinstance(data, str): - return "MASKED" - return data - - langfuse = Langfuse(debug=True, mask=mask_func) - api_wrapper = LangfuseAPI() - - trace = langfuse.trace(name="test_trace", input={"sensitive": "data"}) - sleep(0.1) - trace.update(output={"more": "sensitive"}) - - gen = trace.generation(name="test_gen", input={"prompt": "secret"}) - sleep(0.1) - gen.update(output="new_confidential") - - span = trace.span(name="test_span", input={"data": "private"}) - sleep(0.1) - span.update(output="new_classified") - - langfuse.flush() - sleep(1) - - fetched_trace = api_wrapper.get_trace(trace.id) - assert fetched_trace["input"] == {"sensitive": "MASKED"} - assert fetched_trace["output"] == {"more": "MASKED"} - - fetched_gen = [ - o for o in fetched_trace["observations"] if o["type"] == "GENERATION" - ][0] - assert fetched_gen["input"] == {"prompt": "MASKED"} - assert fetched_gen["output"] == "MASKED" - - fetched_span = [o for o in fetched_trace["observations"] if o["type"] == "SPAN"][0] - assert fetched_span["input"] == {"data": "MASKED"} - assert fetched_span["output"] == "MASKED" - - def faulty_mask_func(data): - raise Exception("Masking error") - - langfuse = Langfuse(debug=True, mask=faulty_mask_func) - - trace = langfuse.trace(name="test_trace", input={"sensitive": "data"}) - sleep(0.1) - trace.update(output={"more": "sensitive"}) - langfuse.flush() - sleep(1) - - fetched_trace = api_wrapper.get_trace(trace.id) - assert fetched_trace["input"] == "" - assert fetched_trace["output"] == "" - - -def test_get_project_id(): - langfuse = Langfuse(debug=False) - res = langfuse._get_project_id() - assert res is not None - assert res == "7a88fb47-b4e2-43b8-a06c-a5ce950dc53a" - - -def test_generate_trace_id(): - langfuse = Langfuse(debug=False) - trace_id = create_uuid() - - langfuse.trace(id=trace_id, name="test_trace") - langfuse.flush() - - trace_url = langfuse.get_trace_url() - assert ( - trace_url - == f"http://localhost:3000/project/7a88fb47-b4e2-43b8-a06c-a5ce950dc53a/traces/{trace_id}" - ) - - -def test_environment_from_constructor(): - # Test with valid environment - langfuse = Langfuse(debug=True, environment="production") - api_wrapper = LangfuseAPI() - - trace = langfuse.trace(name="test_environment") - sleep(0.1) - trace.update(name="updated_name") - - generation = trace.generation(name="test_gen") - sleep(0.1) - generation.update(name="test_gen_1") - - score_id = create_uuid() - langfuse.score(id=score_id, trace_id=trace.id, name="test_score", value=1) - - langfuse.flush() - sleep(1) - - fetched_trace = api_wrapper.get_trace(trace.id) - assert fetched_trace["environment"] == "production" - - # Check that observations have the environment - gen = [o for o in fetched_trace["observations"] if o["id"] == generation.id][0] - assert gen["environment"] == "production" - - # Check that scores have the environment - assert fetched_trace["scores"][0]["environment"] == "production" - - -def test_environment_from_env_var(monkeypatch): - # Test with environment variable - monkeypatch.setenv("LANGFUSE_TRACING_ENVIRONMENT", "staging") - - langfuse = Langfuse(debug=True) - api_wrapper = LangfuseAPI() - - trace = langfuse.trace(name="test_environment_var") - langfuse.flush() - sleep(1) - - fetched_trace = api_wrapper.get_trace(trace.id) - assert fetched_trace["environment"] == "staging" - - # Test that constructor overrides environment variable - langfuse = Langfuse(debug=False, environment="testing") - trace = langfuse.trace(name="test_environment_override") - langfuse.flush() - sleep(1) - - fetched_trace = api_wrapper.get_trace(trace.id) - assert fetched_trace["environment"] == "testing" diff --git a/tests/test_core_sdk_unit.py b/tests/test_core_sdk_unit.py deleted file mode 100644 index eb1702c11..000000000 --- a/tests/test_core_sdk_unit.py +++ /dev/null @@ -1,84 +0,0 @@ -from unittest.mock import Mock -from langfuse.api.client import FernLangfuse -from langfuse.client import ( - StatefulClient, - StatefulGenerationClient, - StatefulSpanClient, - StatefulTraceClient, -) -import pytest -from langfuse import Langfuse - - -@pytest.fixture -def langfuse(): - langfuse_instance = Langfuse(debug=False) - langfuse_instance.client = Mock() - langfuse_instance.task_manager = Mock() - langfuse_instance.log = Mock() - - return langfuse_instance - - -@pytest.fixture -def stateful_client(): - stateful_client = StatefulClient(Mock(), "test_id", Mock(), "test_trace", Mock()) - - return stateful_client - - -@pytest.mark.parametrize( - "trace_method, expected_client, kwargs", - [ - (Langfuse.trace, StatefulTraceClient, {}), - (Langfuse.generation, StatefulGenerationClient, {}), - (Langfuse.span, StatefulSpanClient, {}), - (Langfuse.score, StatefulClient, {"value": 1, "trace_id": "test_trace"}), - ], -) -def test_langfuse_returning_if_taskmanager_fails( - langfuse, trace_method, expected_client, kwargs -): - trace_name = "test_trace" - - mock_task_manager = langfuse.task_manager.add_task - mock_task_manager.return_value = Exception("Task manager unable to process event") - - body = { - "name": trace_name, - **kwargs, - } - - result = trace_method(langfuse, **body) - mock_task_manager.assert_called() - - assert isinstance(result, expected_client) - - -@pytest.mark.parametrize( - "trace_method, expected_client, kwargs", - [ - (StatefulClient.generation, StatefulGenerationClient, {}), - (StatefulClient.span, StatefulSpanClient, {}), - (StatefulClient.score, StatefulClient, {"value": 1}), - ], -) -def test_stateful_client_returning_if_taskmanager_fails( - stateful_client, trace_method, expected_client, kwargs -): - trace_name = "test_trace" - - mock_task_manager = stateful_client.task_manager.add_task - mock_task_manager.return_value = Exception("Task manager unable to process event") - mock_client = stateful_client.client - mock_client.return_value = FernLangfuse(base_url="http://localhost:8000") - - body = { - "name": trace_name, - **kwargs, - } - - result = trace_method(stateful_client, **body) - mock_task_manager.assert_called() - - assert isinstance(result, expected_client) diff --git a/tests/test_datasets.py b/tests/test_datasets.py deleted file mode 100644 index 7ef65417b..000000000 --- a/tests/test_datasets.py +++ /dev/null @@ -1,562 +0,0 @@ -import json -import os -import time -from concurrent.futures import ThreadPoolExecutor -from typing import List - -import pytest -from langchain import LLMChain, OpenAI, PromptTemplate - -from langfuse import Langfuse -from langfuse.api.resources.commons.types.observation import Observation -from langfuse.decorators import langfuse_context, observe -from tests.utils import create_uuid, get_api, get_llama_index_index - - -def test_create_and_get_dataset(): - langfuse = Langfuse(debug=False) - - name = "Text with spaces " + create_uuid()[:5] - langfuse.create_dataset(name=name) - dataset = langfuse.get_dataset(name) - assert dataset.name == name - - name = create_uuid() - langfuse.create_dataset( - name=name, description="This is a test dataset", metadata={"key": "value"} - ) - dataset = langfuse.get_dataset(name) - assert dataset.name == name - assert dataset.description == "This is a test dataset" - assert dataset.metadata == {"key": "value"} - - -def test_create_dataset_item(): - langfuse = Langfuse(debug=False) - name = create_uuid() - langfuse.create_dataset(name=name) - - generation = langfuse.generation(name="test") - langfuse.flush() - - input = {"input": "Hello World"} - # 2 - langfuse.create_dataset_item(dataset_name=name, input=input) - # 1 - langfuse.create_dataset_item( - dataset_name=name, - input=input, - expected_output="Output", - metadata={"key": "value"}, - source_observation_id=generation.id, - source_trace_id=generation.trace_id, - ) - # 0 - no data - langfuse.create_dataset_item( - dataset_name=name, - ) - - dataset = langfuse.get_dataset(name) - - assert len(dataset.items) == 3 - assert dataset.items[2].input == input - assert dataset.items[2].expected_output is None - assert dataset.items[2].dataset_name == name - - assert dataset.items[1].input == input - assert dataset.items[1].expected_output == "Output" - assert dataset.items[1].metadata == {"key": "value"} - assert dataset.items[1].source_observation_id == generation.id - assert dataset.items[1].source_trace_id == generation.trace_id - assert dataset.items[1].dataset_name == name - - assert dataset.items[0].input is None - assert dataset.items[0].expected_output is None - assert dataset.items[0].metadata is None - assert dataset.items[0].source_observation_id is None - assert dataset.items[0].source_trace_id is None - assert dataset.items[0].dataset_name == name - - -def test_get_all_items(): - langfuse = Langfuse(debug=False) - name = create_uuid() - langfuse.create_dataset(name=name) - - input = {"input": "Hello World"} - for _ in range(99): - langfuse.create_dataset_item(dataset_name=name, input=input) - - dataset = langfuse.get_dataset(name) - assert len(dataset.items) == 99 - - dataset_2 = langfuse.get_dataset(name, fetch_items_page_size=9) - assert len(dataset_2.items) == 99 - - dataset_3 = langfuse.get_dataset(name, fetch_items_page_size=2) - assert len(dataset_3.items) == 99 - - -def test_upsert_and_get_dataset_item(): - langfuse = Langfuse(debug=False) - name = create_uuid() - langfuse.create_dataset(name=name) - input = {"input": "Hello World"} - item = langfuse.create_dataset_item( - dataset_name=name, input=input, expected_output=input - ) - - get_item = langfuse.get_dataset_item(item.id) - assert get_item.input == input - assert get_item.id == item.id - assert get_item.expected_output == input - - new_input = {"input": "Hello World 2"} - langfuse.create_dataset_item( - dataset_name=name, - input=new_input, - id=item.id, - expected_output=new_input, - status="ARCHIVED", - ) - get_new_item = langfuse.get_dataset_item(item.id) - assert get_new_item.input == new_input - assert get_new_item.id == item.id - assert get_new_item.expected_output == new_input - assert get_new_item.status == "ARCHIVED" - - -def test_linking_observation(): - langfuse = Langfuse(debug=False) - - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - input = json.dumps({"input": "Hello World"}) - langfuse.create_dataset_item(dataset_name=dataset_name, input=input) - - dataset = langfuse.get_dataset(dataset_name) - assert len(dataset.items) == 1 - assert dataset.items[0].input == input - - run_name = create_uuid() - generation_id = create_uuid() - trace_id = None - - for item in dataset.items: - generation = langfuse.generation(id=generation_id) - trace_id = generation.trace_id - - item.link(generation, run_name) - - run = langfuse.get_dataset_run(dataset_name, run_name) - - assert run.name == run_name - assert len(run.dataset_run_items) == 1 - assert run.dataset_run_items[0].observation_id == generation_id - assert run.dataset_run_items[0].trace_id == trace_id - - -def test_linking_trace_and_run_metadata_and_description(): - langfuse = Langfuse(debug=False) - - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - input = json.dumps({"input": "Hello World"}) - langfuse.create_dataset_item(dataset_name=dataset_name, input=input) - - dataset = langfuse.get_dataset(dataset_name) - assert len(dataset.items) == 1 - assert dataset.items[0].input == input - - run_name = create_uuid() - trace_id = create_uuid() - - for item in dataset.items: - trace = langfuse.trace(id=trace_id) - - item.link( - trace, - run_name, - run_metadata={"key": "value"}, - run_description="This is a test run", - ) - - run = langfuse.get_dataset_run(dataset_name, run_name) - - assert run.name == run_name - assert run.metadata == {"key": "value"} - assert run.description == "This is a test run" - assert len(run.dataset_run_items) == 1 - assert run.dataset_run_items[0].trace_id == trace_id - assert run.dataset_run_items[0].observation_id is None - - -def test_get_runs(): - langfuse = Langfuse(debug=False) - - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - input = json.dumps({"input": "Hello World"}) - langfuse.create_dataset_item(dataset_name=dataset_name, input=input) - - dataset = langfuse.get_dataset(dataset_name) - assert len(dataset.items) == 1 - assert dataset.items[0].input == input - - run_name_1 = create_uuid() - trace_id_1 = create_uuid() - - for item in dataset.items: - trace = langfuse.trace(id=trace_id_1) - - item.link( - trace, - run_name_1, - run_metadata={"key": "value"}, - run_description="This is a test run", - ) - - run_name_2 = create_uuid() - trace_id_2 = create_uuid() - - for item in dataset.items: - trace = langfuse.trace(id=trace_id_2) - - item.link( - trace, - run_name_2, - run_metadata={"key": "value"}, - run_description="This is a test run", - ) - - runs = langfuse.get_dataset_runs(dataset_name) - - assert len(runs.data) == 2 - assert runs.data[0].name == run_name_2 - assert runs.data[0].metadata == {"key": "value"} - assert runs.data[0].description == "This is a test run" - assert runs.data[1].name == run_name_1 - assert runs.meta.total_items == 2 - assert runs.meta.total_pages == 1 - assert runs.meta.page == 1 - assert runs.meta.limit == 50 - - -def test_linking_via_id_observation_arg_legacy(): - langfuse = Langfuse(debug=False) - - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - input = json.dumps({"input": "Hello World"}) - langfuse.create_dataset_item(dataset_name=dataset_name, input=input) - - dataset = langfuse.get_dataset(dataset_name) - assert len(dataset.items) == 1 - assert dataset.items[0].input == input - - run_name = create_uuid() - generation_id = create_uuid() - trace_id = None - - for item in dataset.items: - generation = langfuse.generation(id=generation_id) - trace_id = generation.trace_id - langfuse.flush() - time.sleep(1) - - item.link(generation_id, run_name) - - langfuse.flush() - - time.sleep(1) - - run = langfuse.get_dataset_run(dataset_name, run_name) - - assert run.name == run_name - assert len(run.dataset_run_items) == 1 - assert run.dataset_run_items[0].observation_id == generation_id - assert run.dataset_run_items[0].trace_id == trace_id - - -def test_linking_via_id_trace_kwarg(): - langfuse = Langfuse(debug=False) - - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - input = json.dumps({"input": "Hello World"}) - langfuse.create_dataset_item(dataset_name=dataset_name, input=input) - - dataset = langfuse.get_dataset(dataset_name) - assert len(dataset.items) == 1 - assert dataset.items[0].input == input - - run_name = create_uuid() - trace_id = create_uuid() - - for item in dataset.items: - langfuse.trace(id=trace_id) - langfuse.flush() - - item.link(None, run_name, trace_id=trace_id) - - run = langfuse.get_dataset_run(dataset_name, run_name) - - assert run.name == run_name - assert len(run.dataset_run_items) == 1 - assert run.dataset_run_items[0].observation_id is None - assert run.dataset_run_items[0].trace_id == trace_id - - -def test_linking_via_id_generation_kwarg(): - langfuse = Langfuse(debug=False) - - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - input = json.dumps({"input": "Hello World"}) - langfuse.create_dataset_item(dataset_name=dataset_name, input=input) - - dataset = langfuse.get_dataset(dataset_name) - assert len(dataset.items) == 1 - assert dataset.items[0].input == input - - run_name = create_uuid() - generation_id = create_uuid() - trace_id = None - - for item in dataset.items: - generation = langfuse.generation(id=generation_id) - trace_id = generation.trace_id - langfuse.flush() - - item.link(None, run_name, trace_id=trace_id, observation_id=generation_id) - - run = langfuse.get_dataset_run(dataset_name, run_name) - - assert run.name == run_name - assert len(run.dataset_run_items) == 1 - assert run.dataset_run_items[0].observation_id == generation_id - assert run.dataset_run_items[0].trace_id == trace_id - - -def test_langchain_dataset(): - langfuse = Langfuse(debug=False) - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - input = json.dumps({"input": "Hello World"}) - langfuse.create_dataset_item(dataset_name=dataset_name, input=input) - - dataset = langfuse.get_dataset(dataset_name) - - run_name = create_uuid() - - dataset_item_id = None - - for item in dataset.items: - handler = item.get_langchain_handler(run_name=run_name) - dataset_item_id = item.id - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - run = langfuse.get_dataset_run(dataset_name, run_name) - - assert run.name == run_name - assert len(run.dataset_run_items) == 1 - assert run.dataset_run_items[0].dataset_run_id == run.id - - api = get_api() - - trace = api.trace.get(handler.get_trace_id()) - - assert len(trace.observations) == 2 - - sorted_observations = sorted_dependencies(trace.observations) - - assert sorted_observations[0].id == sorted_observations[1].parent_observation_id - assert sorted_observations[0].parent_observation_id is None - - assert trace.name == "LLMChain" # Overwritten by the Langchain run - assert trace.metadata == { - "dataset_item_id": dataset_item_id, - "run_name": run_name, - "dataset_id": dataset.id, - } - - assert sorted_observations[0].name == "LLMChain" - - assert sorted_observations[1].name == "OpenAI" - assert sorted_observations[1].type == "GENERATION" - assert sorted_observations[1].input is not None - assert sorted_observations[1].output is not None - assert sorted_observations[1].input != "" - assert sorted_observations[1].output != "" - assert sorted_observations[1].usage.total is not None - assert sorted_observations[1].usage.input is not None - assert sorted_observations[1].usage.output is not None - - -@pytest.mark.skip(reason="flaky on V3 pipeline") -def test_llama_index_dataset(): - langfuse = Langfuse(debug=False) - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - langfuse.create_dataset_item( - dataset_name=dataset_name, input={"input": "Hello World"} - ) - - dataset = langfuse.get_dataset(dataset_name) - - run_name = create_uuid() - - dataset_item_id = None - - for item in dataset.items: - with item.observe_llama_index(run_name=run_name) as handler: - dataset_item_id = item.id - - index = get_llama_index_index(handler) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - langfuse.flush() - handler.flush() - - run = langfuse.get_dataset_run(dataset_name, run_name) - - assert run.name == run_name - assert len(run.dataset_run_items) == 1 - assert run.dataset_run_items[0].dataset_run_id == run.id - time.sleep(3) - - trace_id = run.dataset_run_items[0].trace_id - trace = get_api().trace.get(trace_id) - - sorted_observations = sorted_dependencies(trace.observations) - - assert sorted_observations[0].id == sorted_observations[1].parent_observation_id - assert sorted_observations[0].parent_observation_id is None - - assert trace.name == "LlamaIndex_query" # Overwritten by the Langchain run - assert trace.metadata == { - "dataset_item_id": dataset_item_id, - "run_name": run_name, - "dataset_id": dataset.id, - } - - -def sorted_dependencies( - observations: List[Observation], -): - # observations have an id and a parent_observation_id. Return a sorted list starting with the root observation where the parent_observation_id is None - parent_to_observation = {obs.parent_observation_id: obs for obs in observations} - - # Start with the root observation (parent_observation_id is None) - current_observation = parent_to_observation[None] - dependencies = [current_observation] - - while current_observation.id in parent_to_observation: - current_observation = parent_to_observation[current_observation.id] - dependencies.append(current_observation) - - return dependencies - - -def test_observe_dataset_run(): - # Create dataset - langfuse = Langfuse(debug=True) - dataset_name = create_uuid() - langfuse.create_dataset(name=dataset_name) - - items_data = [] - num_items = 3 - - for i in range(num_items): - trace_id = create_uuid() - dataset_item_input = "Hello World " + str(i) - langfuse.create_dataset_item( - dataset_name=dataset_name, input=dataset_item_input - ) - - items_data.append((dataset_item_input, trace_id)) - - dataset = langfuse.get_dataset(dataset_name) - assert len(dataset.items) == num_items - - run_name = create_uuid() - - @observe() - def run_llm_app_on_dataset_item(input): - return input - - def wrapperFunc(input): - return run_llm_app_on_dataset_item(input) - - def execute_dataset_item(item, run_name, trace_id): - with item.observe(run_name=run_name, trace_id=trace_id): - wrapperFunc(item.input) - - items = zip(dataset.items[::-1], items_data) # Reverse order to reflect input order - - with ThreadPoolExecutor() as executor: - for item, (_, trace_id) in items: - result = executor.submit( - execute_dataset_item, - item, - run_name=run_name, - trace_id=trace_id, - ) - - result.result() - - langfuse_context.flush() - - # Check dataset run - run = langfuse.get_dataset_run(dataset_name, run_name) - - assert run.name == run_name - assert len(run.dataset_run_items) == num_items - assert run.dataset_run_items[0].dataset_run_id == run.id - - for _, trace_id in items_data: - assert any( - item.trace_id == trace_id for item in run.dataset_run_items - ), f"Trace {trace_id} not found in run" - - for dataset_item_input, trace_id in items_data: - trace = get_api().trace.get(trace_id) - - assert trace.name == "run_llm_app_on_dataset_item" - assert len(trace.observations) == 0 - assert trace.input["args"][0] == dataset_item_input - assert trace.output == dataset_item_input - - # Check that the decorator context is not polluted - new_trace_id = create_uuid() - run_llm_app_on_dataset_item( - "non-dataset-run-afterwards", langfuse_observation_id=new_trace_id - ) - - langfuse_context.flush() - - next_trace = get_api().trace.get(new_trace_id) - assert next_trace.name == "run_llm_app_on_dataset_item" - assert next_trace.input["args"][0] == "non-dataset-run-afterwards" - assert next_trace.output == "non-dataset-run-afterwards" - assert len(next_trace.observations) == 0 - assert next_trace.id != trace_id diff --git a/tests/test_decorators.py b/tests/test_decorators.py deleted file mode 100644 index df6d2d4cf..000000000 --- a/tests/test_decorators.py +++ /dev/null @@ -1,1571 +0,0 @@ -import asyncio -from collections import defaultdict -from concurrent.futures import ThreadPoolExecutor -from contextvars import ContextVar -from time import sleep -from typing import Optional - -import pytest -from langchain.prompts import ChatPromptTemplate -from langchain_openai import ChatOpenAI - -from langfuse.decorators import langfuse_context, observe -from langfuse.media import LangfuseMedia -from langfuse.openai import AsyncOpenAI -from tests.utils import create_uuid, get_api, get_llama_index_index - -mock_metadata = {"key": "metadata"} -mock_deep_metadata = {"key": "mock_deep_metadata"} -mock_session_id = "session-id-1" -mock_args = (1, 2, 3) -mock_kwargs = {"a": 1, "b": 2, "c": 3} - - -def test_nested_observations(): - mock_name = "test_nested_observations" - mock_trace_id = create_uuid() - - @observe(as_type="generation", name="level_3_to_be_overwritten") - def level_3_function(): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation( - metadata=mock_deep_metadata, - usage={"input": 150, "output": 50, "total": 300}, - model="gpt-3.5-turbo", - output="mock_output", - ) - langfuse_context.update_current_observation( - version="version-1", name="overwritten_level_3" - ) - - langfuse_context.update_current_trace( - session_id=mock_session_id, name=mock_name - ) - - langfuse_context.update_current_trace( - user_id="user_id", - ) - - return "level_3" - - @observe(name="level_2_manually_set") - def level_2_function(): - level_3_function() - langfuse_context.update_current_observation(metadata=mock_metadata) - - return "level_2" - - @observe() - def level_1_function(*args, **kwargs): - level_2_function() - - return "level_1" - - result = level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - langfuse_context.flush() - - assert result == "level_1" # Wrapped function returns correctly - - # ID setting for span or trace - - trace_data = get_api().trace.get(mock_trace_id) - assert ( - len(trace_data.observations) == 2 - ) # Top-most function is trace, so it's not an observations - - assert trace_data.input == {"args": list(mock_args), "kwargs": mock_kwargs} - assert trace_data.output == "level_1" - - # trace parameters if set anywhere in the call stack - assert trace_data.session_id == mock_session_id - assert trace_data.user_id == "user_id" - assert trace_data.name == mock_name - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_trace_id]) == 1 # Trace has only one child - assert len(adjacencies) == 2 # Only trace and one observation have children - - level_2_observation = adjacencies[mock_trace_id][0] - level_3_observation = adjacencies[level_2_observation.id][0] - - assert level_2_observation.name == "level_2_manually_set" - assert level_2_observation.metadata == mock_metadata - - assert level_3_observation.name == "overwritten_level_3" - assert level_3_observation.metadata == mock_deep_metadata - assert level_3_observation.type == "GENERATION" - assert level_3_observation.calculated_total_cost > 0 - assert level_3_observation.output == "mock_output" - assert level_3_observation.version == "version-1" - - -def test_nested_observations_with_non_parentheses_decorator(): - mock_name = "test_nested_observations" - mock_trace_id = create_uuid() - - @observe(as_type="generation", name="level_3_to_be_overwritten") - def level_3_function(): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation( - metadata=mock_deep_metadata, - usage={"input": 150, "output": 50, "total": 300}, - model="gpt-3.5-turbo", - output="mock_output", - ) - langfuse_context.update_current_observation( - version="version-1", name="overwritten_level_3" - ) - - langfuse_context.update_current_trace( - session_id=mock_session_id, name=mock_name - ) - - langfuse_context.update_current_trace( - user_id="user_id", - ) - - return "level_3" - - @observe - def level_2_function(): - level_3_function() - langfuse_context.update_current_observation(metadata=mock_metadata) - - return "level_2" - - @observe - def level_1_function(*args, **kwargs): - level_2_function() - - return "level_1" - - result = level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - langfuse_context.flush() - - assert result == "level_1" # Wrapped function returns correctly - - # ID setting for span or trace - - trace_data = get_api().trace.get(mock_trace_id) - assert ( - len(trace_data.observations) == 2 - ) # Top-most function is trace, so it's not an observations - - assert trace_data.input == {"args": list(mock_args), "kwargs": mock_kwargs} - assert trace_data.output == "level_1" - - # trace parameters if set anywhere in the call stack - assert trace_data.session_id == mock_session_id - assert trace_data.user_id == "user_id" - assert trace_data.name == mock_name - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_trace_id]) == 1 # Trace has only one child - assert len(adjacencies) == 2 # Only trace and one observation have children - - level_2_observation = adjacencies[mock_trace_id][0] - level_3_observation = adjacencies[level_2_observation.id][0] - - assert level_2_observation.name == "level_2_function" - assert level_2_observation.metadata == mock_metadata - - assert level_3_observation.name == "overwritten_level_3" - assert level_3_observation.metadata == mock_deep_metadata - assert level_3_observation.type == "GENERATION" - assert level_3_observation.calculated_total_cost > 0 - assert level_3_observation.output == "mock_output" - assert level_3_observation.version == "version-1" - - -# behavior on exceptions -def test_exception_in_wrapped_function(): - mock_name = "test_exception_in_wrapped_function" - mock_trace_id = create_uuid() - - @observe(as_type="generation") - def level_3_function(): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation( - metadata=mock_deep_metadata, - usage={"input": 150, "output": 50, "total": 300}, - model="gpt-3.5-turbo", - ) - langfuse_context.update_current_trace( - session_id=mock_session_id, name=mock_name - ) - - raise ValueError("Mock exception") - - @observe() - def level_2_function(): - level_3_function() - langfuse_context.update_current_observation(metadata=mock_metadata) - - return "level_2" - - @observe() - def level_1_function(*args, **kwargs): - sleep(1) - level_2_function() - - return "level_1" - - # Check that the exception is raised - with pytest.raises(ValueError): - level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - - assert trace_data.input == {"args": list(mock_args), "kwargs": mock_kwargs} - assert trace_data.output is None # Output is None if exception is raised - - # trace parameters if set anywhere in the call stack - assert trace_data.session_id == mock_session_id - assert trace_data.name == mock_name - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_trace_id]) == 1 # Trace has only one child - assert len(adjacencies) == 2 # Only trace and one observation have children - - level_2_observation = adjacencies[mock_trace_id][0] - level_3_observation = adjacencies[level_2_observation.id][0] - - assert ( - level_2_observation.metadata == {} - ) # Exception is raised before metadata is set - assert level_3_observation.metadata == mock_deep_metadata - assert level_3_observation.status_message == "Mock exception" - assert level_3_observation.level == "ERROR" - - -# behavior on concurrency -def test_concurrent_decorator_executions(): - mock_name = "test_concurrent_decorator_executions" - mock_trace_id_1 = create_uuid() - mock_trace_id_2 = create_uuid() - - @observe(as_type="generation") - def level_3_function(): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation(metadata=mock_deep_metadata) - langfuse_context.update_current_observation( - metadata=mock_deep_metadata, - usage={"input": 150, "output": 50, "total": 300}, - model="gpt-3.5-turbo", - ) - langfuse_context.update_current_trace(session_id=mock_session_id) - - return "level_3" - - @observe() - def level_2_function(): - level_3_function() - langfuse_context.update_current_observation(metadata=mock_metadata) - - return "level_2" - - @observe(name=mock_name) - def level_1_function(*args, **kwargs): - sleep(1) - level_2_function() - - return "level_1" - - with ThreadPoolExecutor(max_workers=2) as executor: - future1 = executor.submit( - level_1_function, - *mock_args, - mock_trace_id_1, - **mock_kwargs, - langfuse_observation_id=mock_trace_id_1, - ) - future2 = executor.submit( - level_1_function, - *mock_args, - mock_trace_id_2, - **mock_kwargs, - langfuse_observation_id=mock_trace_id_2, - ) - - future1.result() - future2.result() - - langfuse_context.flush() - - for mock_id in [mock_trace_id_1, mock_trace_id_2]: - trace_data = get_api().trace.get(mock_id) - assert ( - len(trace_data.observations) == 2 - ) # Top-most function is trace, so it's not an observations - - assert trace_data.input == { - "args": list(mock_args) + [mock_id], - "kwargs": mock_kwargs, - } - assert trace_data.output == "level_1" - - # trace parameters if set anywhere in the call stack - assert trace_data.session_id == mock_session_id - assert trace_data.name == mock_name - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_id]) == 1 # Trace has only one child - assert len(adjacencies) == 2 # Only trace and one observation have children - - level_2_observation = adjacencies[mock_id][0] - level_3_observation = adjacencies[level_2_observation.id][0] - - assert level_2_observation.metadata == mock_metadata - assert level_3_observation.metadata == mock_deep_metadata - assert level_3_observation.type == "GENERATION" - assert level_3_observation.calculated_total_cost > 0 - - -def test_decorators_llama_index(): - mock_name = "test_decorators_llama_index" - mock_trace_id = create_uuid() - - @observe() - def llama_index_operations(*args, **kwargs): - callback = langfuse_context.get_current_llama_index_handler() - index = get_llama_index_index(callback, force_rebuild=True) - - return index.as_query_engine().query(kwargs["query"]) - - @observe() - def level_3_function(*args, **kwargs): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation(metadata=mock_deep_metadata) - langfuse_context.update_current_trace( - session_id=mock_session_id, name=mock_name - ) - - return llama_index_operations(*args, **kwargs) - - @observe() - def level_2_function(*args, **kwargs): - langfuse_context.update_current_observation(metadata=mock_metadata) - - return level_3_function(*args, **kwargs) - - @observe() - def level_1_function(*args, **kwargs): - return level_2_function(*args, **kwargs) - - level_1_function( - query="What is the authors ambition?", langfuse_observation_id=mock_trace_id - ) - - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - assert len(trace_data.observations) > 2 - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_trace_id]) == 1 # Trace has only one child - - # Check that the llama_index_operations is at the correct level - lvl = 1 - curr_id = mock_trace_id - llama_index_root_span = None - - while len(adjacencies[curr_id]) > 0: - o = adjacencies[curr_id][0] - if o.name == "llama_index_operations": - llama_index_root_span = o - break - - curr_id = adjacencies[curr_id][0].id - lvl += 1 - - assert lvl == 3 - - assert llama_index_root_span is not None - assert any([o.name == "OpenAIEmbedding" for o in trace_data.observations]) - - -def test_decorators_langchain(): - mock_name = "test_decorators_langchain" - mock_trace_id = create_uuid() - - @observe() - def langchain_operations(*args, **kwargs): - handler = langfuse_context.get_current_langchain_handler() - prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}") - model = ChatOpenAI(temperature=0) - - chain = prompt | model - - return chain.invoke( - {"topic": kwargs["topic"]}, - config={ - "callbacks": [handler], - }, - ) - - @observe() - def level_3_function(*args, **kwargs): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation(metadata=mock_deep_metadata) - langfuse_context.update_current_trace( - session_id=mock_session_id, name=mock_name - ) - - return langchain_operations(*args, **kwargs) - - @observe() - def level_2_function(*args, **kwargs): - langfuse_context.update_current_observation(metadata=mock_metadata) - - return level_3_function(*args, **kwargs) - - @observe() - def level_1_function(*args, **kwargs): - return level_2_function(*args, **kwargs) - - level_1_function(topic="socks", langfuse_observation_id=mock_trace_id) - - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - assert len(trace_data.observations) > 2 - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_trace_id]) == 1 # Trace has only one child - - # Check that the langchain_operations is at the correct level - lvl = 1 - curr_id = mock_trace_id - llama_index_root_span = None - - while len(adjacencies[curr_id]) > 0: - o = adjacencies[curr_id][0] - if o.name == "langchain_operations": - llama_index_root_span = o - break - - curr_id = adjacencies[curr_id][0].id - lvl += 1 - - assert lvl == 3 - - assert llama_index_root_span is not None - assert any([o.name == "ChatPromptTemplate" for o in trace_data.observations]) - - -@pytest.mark.asyncio -async def test_asyncio_concurrency_inside_nested_span(): - mock_name = "test_asyncio_concurrency_inside_nested_span" - mock_trace_id = create_uuid() - mock_observation_id_1 = create_uuid() - mock_observation_id_2 = create_uuid() - - @observe(as_type="generation") - async def level_3_function(): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation( - metadata=mock_deep_metadata, - usage={"input": 150, "output": 50, "total": 300}, - model="gpt-3.5-turbo", - ) - langfuse_context.update_current_trace( - session_id=mock_session_id, name=mock_name - ) - - return "level_3" - - @observe() - async def level_2_function(*args, **kwargs): - await level_3_function() - langfuse_context.update_current_observation(metadata=mock_metadata) - - return "level_2" - - @observe() - async def level_1_function(*args, **kwargs): - print("Executing level 1") - await asyncio.gather( - level_2_function( - *mock_args, - mock_observation_id_1, - **mock_kwargs, - langfuse_observation_id=mock_observation_id_1, - ), - level_2_function( - *mock_args, - mock_observation_id_2, - **mock_kwargs, - langfuse_observation_id=mock_observation_id_2, - ), - ) - - return "level_1" - - await level_1_function(langfuse_observation_id=mock_trace_id) - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - assert ( - len(trace_data.observations) == 4 - ) # Top-most function is trace, so it's not an observations - - # trace parameters if set anywhere in the call stack - assert trace_data.name == mock_name - assert trace_data.session_id == mock_session_id - assert trace_data.output == "level_1" - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - # Trace has two children - assert len(adjacencies[mock_trace_id]) == 2 - - # Each async call has one child - for mock_id in [mock_observation_id_1, mock_observation_id_2]: - assert len(adjacencies[mock_id]) == 1 - - assert ( - len(adjacencies) == 3 - ) # Only trace and the two lvl-2 observation have children - - -def test_get_current_ids(): - mock_trace_id = create_uuid() - mock_deep_observation_id = create_uuid() - - retrieved_trace_id: ContextVar[Optional[str]] = ContextVar( - "retrieved_trace_id", default=None - ) - retrieved_observation_id: ContextVar[Optional[str]] = ContextVar( - "retrieved_observation_id", default=None - ) - - @observe() - def level_3_function(*args, **kwargs): - retrieved_trace_id.set(langfuse_context.get_current_trace_id()) - retrieved_observation_id.set(langfuse_context.get_current_observation_id()) - - return "level_3" - - @observe() - def level_2_function(): - return level_3_function(langfuse_observation_id=mock_deep_observation_id) - - @observe() - def level_1_function(*args, **kwargs): - level_2_function() - - return "level_1" - - result = level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - langfuse_context.flush() - - assert result == "level_1" # Wrapped function returns correctly - - # ID setting for span or trace - trace_data = get_api().trace.get(mock_trace_id) - - assert retrieved_trace_id.get() == mock_trace_id - assert retrieved_observation_id.get() == mock_deep_observation_id - assert any( - [o.id == retrieved_observation_id.get() for o in trace_data.observations] - ) - - -def test_get_current_trace_url(): - mock_trace_id = create_uuid() - - @observe() - def level_3_function(): - return langfuse_context.get_current_trace_url() - - @observe() - def level_2_function(): - return level_3_function() - - @observe() - def level_1_function(*args, **kwargs): - return level_2_function() - - result = level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - langfuse_context.flush() - - expected_url = f"http://localhost:3000/project/7a88fb47-b4e2-43b8-a06c-a5ce950dc53a/traces/{mock_trace_id}" - assert result == expected_url - - -def test_scoring_observations(): - mock_name = "test_scoring_observations" - mock_trace_id = create_uuid() - - @observe(as_type="generation") - def level_3_function(): - langfuse_context.score_current_observation( - name="test-observation-score", value=1 - ) - langfuse_context.score_current_trace( - name="another-test-trace-score", value="my_value" - ) - return "level_3" - - @observe() - def level_2_function(): - return level_3_function() - - @observe() - def level_1_function(*args, **kwargs): - langfuse_context.score_current_observation(name="test-trace-score", value=3) - langfuse_context.update_current_trace(name=mock_name) - return level_2_function() - - result = level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - langfuse_context.flush() - - assert result == "level_3" # Wrapped function returns correctly - - # ID setting for span or trace - trace_data = get_api().trace.get(mock_trace_id) - assert ( - len(trace_data.observations) == 2 - ) # Top-most function is trace, so it's not an observations - assert trace_data.name == mock_name - - # Check for correct scoring - scores = trace_data.scores - - assert len(scores) == 3 - - trace_scores = [ - s for s in scores if s.trace_id == mock_trace_id and s.observation_id is None - ] - observation_score = [s for s in scores if s.observation_id is not None][0] - - assert any( - [ - score.name == "another-test-trace-score" - and score.string_value == "my_value" - and score.data_type == "CATEGORICAL" - for score in trace_scores - ] - ) - assert any( - [ - score.name == "test-trace-score" - and score.value == 3 - and score.data_type == "NUMERIC" - for score in trace_scores - ] - ) - - assert observation_score.name == "test-observation-score" - assert observation_score.value == 1 - assert observation_score.data_type == "NUMERIC" - - -def test_circular_reference_handling(): - mock_trace_id = create_uuid() - - # Define a class that will contain a circular reference - class CircularRefObject: - def __init__(self): - self.reference: Optional[CircularRefObject] = None - - @observe() - def function_with_circular_arg(circular_obj, *args, **kwargs): - # This function doesn't need to do anything with circular_obj, - # the test is simply to see if it can be called without error. - return "function response" - - # Create an instance of the object and establish a circular reference - circular_obj = CircularRefObject() - circular_obj.reference = circular_obj - - # Call the decorated function, passing the circularly-referenced object - result = function_with_circular_arg( - circular_obj, langfuse_observation_id=mock_trace_id - ) - - langfuse_context.flush() - - # Validate that the function executed as expected - assert result == "function response" - - trace_data = get_api().trace.get(mock_trace_id) - - assert trace_data.input["args"][0]["reference"] == "CircularRefObject" - - -def test_disabled_io_capture(): - mock_trace_id = create_uuid() - - class Node: - def __init__(self, value: tuple): - self.value = value - - @observe(capture_input=False, capture_output=False) - def nested(*args, **kwargs): - langfuse_context.update_current_observation( - input=Node(("manually set tuple", 1)), output="manually set output" - ) - return "nested response" - - @observe(capture_output=False) - def main(*args, **kwargs): - nested(*args, **kwargs) - return "function response" - - result = main("Hello, World!", name="John", langfuse_observation_id=mock_trace_id) - - langfuse_context.flush() - - assert result == "function response" - - trace_data = get_api().trace.get(mock_trace_id) - - assert trace_data.input == {"args": ["Hello, World!"], "kwargs": {"name": "John"}} - assert trace_data.output is None - - # Check that disabled capture_io doesn't capture manually set input/output - assert len(trace_data.observations) == 1 - assert trace_data.observations[0].input["value"] == ["manually set tuple", 1] - assert trace_data.observations[0].output == "manually set output" - - -def test_decorated_class_and_instance_methods(): - mock_name = "test_decorated_class_and_instance_methods" - mock_trace_id = create_uuid() - - class TestClass: - @classmethod - @observe() - def class_method(cls, *args, **kwargs): - langfuse_context.update_current_observation(name="class_method") - return "class_method" - - @observe(as_type="generation") - def level_3_function(self): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation( - metadata=mock_deep_metadata, - usage={"input": 150, "output": 50, "total": 300}, - model="gpt-3.5-turbo", - output="mock_output", - ) - - langfuse_context.update_current_trace( - session_id=mock_session_id, name=mock_name - ) - - return "level_3" - - @observe() - def level_2_function(self): - TestClass.class_method() - - self.level_3_function() - langfuse_context.update_current_observation(metadata=mock_metadata) - - return "level_2" - - @observe() - def level_1_function(self, *args, **kwargs): - self.level_2_function() - - return "level_1" - - result = TestClass().level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - - langfuse_context.flush() - - assert result == "level_1" # Wrapped function returns correctly - - # ID setting for span or trace - - trace_data = get_api().trace.get(mock_trace_id) - assert ( - len(trace_data.observations) == 3 - ) # Top-most function is trace, so it's not an observations - - assert trace_data.input == {"args": list(mock_args), "kwargs": mock_kwargs} - assert trace_data.output == "level_1" - - # trace parameters if set anywhere in the call stack - assert trace_data.session_id == mock_session_id - assert trace_data.name == mock_name - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_trace_id]) == 1 # Trace has only one child - assert len(adjacencies) == 2 # Only trace and one observation have children - - level_2_observation = adjacencies[mock_trace_id][0] - class_method_observation = [ - o for o in adjacencies[level_2_observation.id] if o.name == "class_method" - ][0] - level_3_observation = [ - o for o in adjacencies[level_2_observation.id] if o.name != "class_method" - ][0] - - assert class_method_observation.input == {"args": [], "kwargs": {}} - assert class_method_observation.output == "class_method" - - assert level_2_observation.metadata == mock_metadata - assert level_3_observation.metadata == mock_deep_metadata - assert level_3_observation.type == "GENERATION" - assert level_3_observation.calculated_total_cost > 0 - assert level_3_observation.output == "mock_output" - - -def test_generator_as_return_value(): - mock_trace_id = create_uuid() - mock_output = "Hello, World!" - - def custom_transform_to_string(x): - return "--".join(x) - - def generator_function(): - yield "Hello" - yield ", " - yield "World!" - - @observe(transform_to_string=custom_transform_to_string) - def nested(): - return generator_function() - - @observe() - def main(**kwargs): - gen = nested() - - result = "" - for item in gen: - result += item - - return result - - result = main(langfuse_observation_id=mock_trace_id) - langfuse_context.flush() - - assert result == mock_output - - trace_data = get_api().trace.get(mock_trace_id) - assert trace_data.output == mock_output - - assert trace_data.observations[0].output == "Hello--, --World!" - - -@pytest.mark.asyncio -async def test_async_generator_as_return_value(): - mock_trace_id = create_uuid() - mock_output = "Hello, async World!" - - def custom_transform_to_string(x): - return "--".join(x) - - @observe(transform_to_string=custom_transform_to_string) - async def async_generator_function(): - await asyncio.sleep(0.1) # Simulate async operation - yield "Hello" - await asyncio.sleep(0.1) - yield ", async " - await asyncio.sleep(0.1) - yield "World!" - - @observe(transform_to_string=custom_transform_to_string) - async def nested_async(): - gen = async_generator_function() - print(type(gen)) - - async for item in gen: - yield item - - @observe() - async def main_async(**kwargs): - gen = nested_async() - - result = "" - async for item in gen: - result += item - - return result - - result = await main_async(langfuse_observation_id=mock_trace_id) - langfuse_context.flush() - - assert result == mock_output - - trace_data = get_api().trace.get(mock_trace_id) - assert trace_data.output == result - - assert trace_data.observations[0].output == "Hello--, async --World!" - assert trace_data.observations[1].output == "Hello--, async --World!" - - -@pytest.mark.asyncio -async def test_async_nested_openai_chat_stream(): - mock_name = "test_async_nested_openai_chat_stream" - mock_trace_id = create_uuid() - mock_tags = ["tag1", "tag2"] - mock_session_id = "session-id-1" - mock_user_id = "user-id-1" - mock_generation_name = "openai generation" - - @observe() - async def level_2_function(): - gen = await AsyncOpenAI().chat.completions.create( - name=mock_generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - session_id=mock_session_id, - user_id=mock_user_id, - tags=mock_tags, - stream=True, - ) - - async for c in gen: - print(c) - - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_trace(name=mock_name) - - return "level_2" - - @observe() - async def level_1_function(*args, **kwargs): - await level_2_function() - - return "level_1" - - result = await level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - langfuse_context.flush() - - assert result == "level_1" # Wrapped function returns correctly - - # ID setting for span or trace - trace_data = get_api().trace.get(mock_trace_id) - assert ( - len(trace_data.observations) == 2 - ) # Top-most function is trace, so it's not an observations - - assert trace_data.input == {"args": list(mock_args), "kwargs": mock_kwargs} - assert trace_data.output == "level_1" - - # trace parameters if set anywhere in the call stack - assert trace_data.session_id == mock_session_id - assert trace_data.name == mock_name - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_trace_id]) == 1 # Trace has only one child - assert len(adjacencies) == 2 # Only trace and one observation have children - - level_2_observation = adjacencies[mock_trace_id][0] - level_3_observation = adjacencies[level_2_observation.id][0] - - assert level_2_observation.metadata == mock_metadata - - generation = level_3_observation - - assert generation.name == mock_generation_name - assert generation.metadata == {"someKey": "someResponse"} - assert generation.input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.type == "GENERATION" - assert "gpt-3.5-turbo" in generation.model - assert generation.start_time is not None - assert generation.end_time is not None - assert generation.start_time < generation.end_time - assert generation.model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.usage.input is not None - assert generation.usage.output is not None - assert generation.usage.total is not None - print(generation) - assert generation.output == 2 - - -def test_generation_at_highest_level(): - mock_trace_id = create_uuid() - mock_result = "Hello, World!" - - @observe(as_type="generation") - def main(): - return mock_result - - result = main(langfuse_observation_id=mock_trace_id) - langfuse_context.flush() - - assert result == mock_result - - trace_data = get_api().trace.get(mock_trace_id) - assert ( - trace_data.output is None - ) # output will be attributed to generation observation - - # Check that the generation is wrapped inside a trace - assert len(trace_data.observations) == 1 - - generation = trace_data.observations[0] - assert generation.type == "GENERATION" - assert generation.output == result - - -def test_generator_as_function_input(): - mock_trace_id = create_uuid() - mock_output = "Hello, World!" - - def generator_function(): - yield "Hello" - yield ", " - yield "World!" - - @observe() - def nested(gen): - result = "" - for item in gen: - result += item - - return result - - @observe() - def main(**kwargs): - gen = generator_function() - - return nested(gen) - - result = main(langfuse_observation_id=mock_trace_id) - langfuse_context.flush() - - assert result == mock_output - - trace_data = get_api().trace.get(mock_trace_id) - assert trace_data.output == mock_output - - assert trace_data.observations[0].input["args"][0] == "" - assert trace_data.observations[0].output == "Hello, World!" - - observation_start_time = trace_data.observations[0].start_time - observation_end_time = trace_data.observations[0].end_time - - assert observation_start_time is not None - assert observation_end_time is not None - assert observation_start_time <= observation_end_time - - -def test_nest_list_of_generator_as_function_IO(): - mock_trace_id = create_uuid() - - def generator_function(): - yield "Hello" - yield ", " - yield "World!" - - @observe() - def nested(list_of_gens): - return list_of_gens - - @observe() - def main(**kwargs): - gen = generator_function() - - return nested([(gen, gen)]) - - main(langfuse_observation_id=mock_trace_id) - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - - assert [[["", ""]]] == trace_data.observations[0].input[ - "args" - ] - - assert all( - ["generator" in arg for arg in trace_data.observations[0].output[0]], - ) - - observation_start_time = trace_data.observations[0].start_time - observation_end_time = trace_data.observations[0].end_time - - assert observation_start_time is not None - assert observation_end_time is not None - assert observation_start_time <= observation_end_time - - -def test_return_dict_for_output(): - mock_trace_id = create_uuid() - mock_output = {"key": "value"} - - @observe() - def function(): - return mock_output - - result = function(langfuse_observation_id=mock_trace_id) - langfuse_context.flush() - - assert result == mock_output - - trace_data = get_api().trace.get(mock_trace_id) - assert trace_data.output == mock_output - - -def test_manual_context_copy_in_threadpoolexecutor(): - from concurrent.futures import ThreadPoolExecutor, as_completed - from contextvars import copy_context - - mock_trace_id = create_uuid() - - @observe() - def execute_task(*args): - return args - - task_args = [["a", "b"], ["c", "d"]] - - @observe() - def execute_groups(task_args): - with ThreadPoolExecutor(3) as executor: - futures = [] - - for task_arg in task_args: - ctx = copy_context() - - # Using a lambda to capture the current 'task_arg' and context 'ctx' to ensure each task uses its specific arguments and isolated context when executed. - task = lambda p=task_arg: ctx.run(execute_task, *p) # noqa - - futures.append(executor.submit(task)) - - # Ensure all futures complete - for future in as_completed(futures): - future.result() - - return [f.result() for f in futures] - - execute_groups(task_args, langfuse_observation_id=mock_trace_id) - - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - - assert len(trace_data.observations) == 2 - - for observation in trace_data.observations: - assert observation.input["args"] in [["a", "b"], ["c", "d"]] - assert observation.output in [["a", "b"], ["c", "d"]] - - assert ( - observation.parent_observation_id is None - ) # Ensure that the observations are not nested - - -def test_update_trace_io(): - mock_name = "test_update_trace_io" - mock_trace_id = create_uuid() - - @observe(as_type="generation", name="level_3_to_be_overwritten") - def level_3_function(): - langfuse_context.update_current_observation(metadata=mock_metadata) - langfuse_context.update_current_observation( - metadata=mock_deep_metadata, - usage={"input": 150, "output": 50, "total": 300}, - model="gpt-3.5-turbo", - output="mock_output", - ) - langfuse_context.update_current_observation( - version="version-1", name="overwritten_level_3" - ) - - langfuse_context.update_current_trace( - session_id=mock_session_id, name=mock_name, input="nested_input" - ) - - langfuse_context.update_current_trace( - user_id="user_id", - ) - - return "level_3" - - @observe(name="level_2_manually_set") - def level_2_function(): - level_3_function() - langfuse_context.update_current_observation(metadata=mock_metadata) - - return "level_2" - - @observe() - def level_1_function(*args, **kwargs): - level_2_function() - langfuse_context.update_current_trace(output="nested_output") - - return "level_1" - - result = level_1_function( - *mock_args, **mock_kwargs, langfuse_observation_id=mock_trace_id - ) - langfuse_context.flush() - - assert result == "level_1" # Wrapped function returns correctly - - # ID setting for span or trace - - trace_data = get_api().trace.get(mock_trace_id) - assert ( - len(trace_data.observations) == 2 - ) # Top-most function is trace, so it's not an observations - - assert trace_data.input == "nested_input" - assert trace_data.output == "nested_output" - - # trace parameters if set anywhere in the call stack - assert trace_data.session_id == mock_session_id - assert trace_data.user_id == "user_id" - assert trace_data.name == mock_name - - # Check correct nesting - adjacencies = defaultdict(list) - for o in trace_data.observations: - adjacencies[o.parent_observation_id or o.trace_id].append(o) - - assert len(adjacencies[mock_trace_id]) == 1 # Trace has only one child - assert len(adjacencies) == 2 # Only trace and one observation have children - - level_2_observation = adjacencies[mock_trace_id][0] - level_3_observation = adjacencies[level_2_observation.id][0] - - assert level_2_observation.name == "level_2_manually_set" - assert level_2_observation.metadata == mock_metadata - - assert level_3_observation.name == "overwritten_level_3" - assert level_3_observation.metadata == mock_deep_metadata - assert level_3_observation.type == "GENERATION" - assert level_3_observation.calculated_total_cost > 0 - assert level_3_observation.output == "mock_output" - assert level_3_observation.version == "version-1" - - -def test_parent_trace_id(): - # Create a parent trace - parent_trace_id = create_uuid() - observation_id = create_uuid() - trace_name = "test_parent_trace_id" - - langfuse = langfuse_context.client_instance - langfuse.trace(id=parent_trace_id, name=trace_name) - - @observe() - def decorated_function(): - return "decorated_function" - - decorated_function( - langfuse_parent_trace_id=parent_trace_id, langfuse_observation_id=observation_id - ) - - langfuse_context.flush() - - trace_data = get_api().trace.get(parent_trace_id) - - assert trace_data.id == parent_trace_id - assert trace_data.name == trace_name - - assert len(trace_data.observations) == 1 - assert trace_data.observations[0].id == observation_id - - -def test_parent_observation_id(): - parent_trace_id = create_uuid() - parent_span_id = create_uuid() - observation_id = create_uuid() - trace_name = "test_parent_observation_id" - mock_metadata = {"key": "value"} - - langfuse = langfuse_context.client_instance - trace = langfuse.trace(id=parent_trace_id, name=trace_name) - trace.span(id=parent_span_id, name="parent_span") - - @observe() - def decorated_function(): - langfuse_context.update_current_trace(metadata=mock_metadata) - langfuse_context.score_current_trace(value=1, name="score_name") - - return "decorated_function" - - decorated_function( - langfuse_parent_trace_id=parent_trace_id, - langfuse_parent_observation_id=parent_span_id, - langfuse_observation_id=observation_id, - ) - - langfuse_context.flush() - - trace_data = get_api().trace.get(parent_trace_id) - - assert trace_data.id == parent_trace_id - assert trace_data.name == trace_name - assert trace_data.metadata == mock_metadata - assert trace_data.scores[0].name == "score_name" - assert trace_data.scores[0].value == 1 - - assert len(trace_data.observations) == 2 - - parent_span = next( - (o for o in trace_data.observations if o.id == parent_span_id), None - ) - assert parent_span is not None - assert parent_span.parent_observation_id is None - - execution_span = next( - (o for o in trace_data.observations if o.id == observation_id), None - ) - assert execution_span is not None - assert execution_span.parent_observation_id == parent_span_id - - -def test_ignore_parent_observation_id_if_parent_trace_id_is_not_set(): - parent_trace_id = create_uuid() - parent_span_id = create_uuid() - observation_id = create_uuid() - trace_name = "test_parent_observation_id" - - langfuse = langfuse_context.client_instance - trace = langfuse.trace(id=parent_trace_id, name=trace_name) - trace.span(id=parent_span_id, name="parent_span") - - @observe() - def decorated_function(): - return "decorated_function" - - decorated_function( - langfuse_parent_observation_id=parent_span_id, - langfuse_observation_id=observation_id, - # No parent trace id set - ) - - langfuse_context.flush() - - trace_data = get_api().trace.get(observation_id) - - assert trace_data.id == observation_id - assert trace_data.name == "decorated_function" - - assert len(trace_data.observations) == 0 - - -def test_top_level_generation(): - mock_trace_id = create_uuid() - mock_output = "Hello, World!" - - @observe(as_type="generation") - def main(): - sleep(1) - langfuse_context.update_current_trace(name="updated_name") - - return mock_output - - main(langfuse_observation_id=mock_trace_id) - - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - assert trace_data.name == "updated_name" - - assert len(trace_data.observations) == 1 - assert trace_data.observations[0].name == "main" - assert trace_data.observations[0].type == "GENERATION" - assert trace_data.observations[0].output == mock_output - - -def test_threadpool_executor(): - mock_trace_id = create_uuid() - mock_parent_observation_id = create_uuid() - - from concurrent.futures import ThreadPoolExecutor, as_completed - - from langfuse.decorators import langfuse_context, observe - - @observe() - def execute_task(*args): - return args - - @observe() - def execute_groups(task_args): - trace_id = langfuse_context.get_current_trace_id() - observation_id = langfuse_context.get_current_observation_id() - - with ThreadPoolExecutor(3) as executor: - futures = [ - executor.submit( - execute_task, - *task_arg, - langfuse_parent_trace_id=trace_id, - langfuse_parent_observation_id=observation_id, - ) - for task_arg in task_args - ] - - for future in as_completed(futures): - future.result() - - return [f.result() for f in futures] - - @observe() - def main(): - task_args = [["a", "b"], ["c", "d"]] - - execute_groups(task_args, langfuse_observation_id=mock_parent_observation_id) - - main(langfuse_observation_id=mock_trace_id) - - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - - assert len(trace_data.observations) == 3 - - parent_observation = next( - (o for o in trace_data.observations if o.id == mock_parent_observation_id), None - ) - - assert parent_observation is not None - - child_observations = [ - o - for o in trace_data.observations - if o.parent_observation_id == mock_parent_observation_id - ] - assert len(child_observations) == 2 - - -def test_media(): - mock_trace_id = create_uuid() - - with open("static/bitcoin.pdf", "rb") as pdf_file: - pdf_bytes = pdf_file.read() - - media = LangfuseMedia(content_bytes=pdf_bytes, content_type="application/pdf") - - @observe() - def main(): - sleep(1) - langfuse_context.update_current_trace( - input={ - "context": { - "nested": media, - }, - }, - output={ - "context": { - "nested": media, - }, - }, - metadata={ - "context": { - "nested": media, - }, - }, - ) - - main(langfuse_observation_id=mock_trace_id) - - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - - assert ( - "@@@langfuseMedia:type=application/pdf|id=" - in trace_data.input["context"]["nested"] - ) - assert ( - "@@@langfuseMedia:type=application/pdf|id=" - in trace_data.output["context"]["nested"] - ) - assert ( - "@@@langfuseMedia:type=application/pdf|id=" - in trace_data.metadata["context"]["nested"] - ) - parsed_reference_string = LangfuseMedia.parse_reference_string( - trace_data.metadata["context"]["nested"] - ) - assert parsed_reference_string["content_type"] == "application/pdf" - assert parsed_reference_string["media_id"] is not None - assert parsed_reference_string["source"] == "bytes" - - -def test_merge_metadata_and_tags(): - mock_trace_id = create_uuid() - - @observe - def nested(): - langfuse_context.update_current_trace( - metadata={"key2": "value2"}, tags=["tag2"] - ) - - @observe - def main(): - langfuse_context.update_current_trace( - metadata={"key1": "value1"}, tags=["tag1"] - ) - - nested() - - main(langfuse_observation_id=mock_trace_id) - - langfuse_context.flush() - - trace_data = get_api().trace.get(mock_trace_id) - - assert trace_data.metadata == {"key1": "value1", "key2": "value2"} - - assert trace_data.tags == ["tag1", "tag2"] diff --git a/tests/test_error_logging.py b/tests/test_error_logging.py deleted file mode 100644 index 8927e1323..000000000 --- a/tests/test_error_logging.py +++ /dev/null @@ -1,66 +0,0 @@ -import logging -import pytest - -from langfuse.utils.error_logging import ( - catch_and_log_errors, - auto_decorate_methods_with, -) - - -# Test for the catch_and_log_errors decorator applied to a standalone function -@catch_and_log_errors -def function_that_raises(): - raise ValueError("This is a test error.") - - -def test_catch_and_log_errors_logs_error_silently(caplog): - function_that_raises() - - assert len(caplog.records) == 1 - assert caplog.records[0].levelno == logging.ERROR - assert ( - "An error occurred in function_that_raises: This is a test error." - in caplog.text - ) - caplog.clear() - - -# Test for the auto_decorate_methods_with decorator applied to a class -@auto_decorate_methods_with(catch_and_log_errors, exclude=["excluded_instance_method"]) -class TestClass: - def instance_method(self): - raise ValueError("Error in instance method.") - - def excluded_instance_method(self): - raise ValueError("Error in instance method.") - - @classmethod - def class_method(cls): - raise ValueError("Error in class method.") - - @staticmethod - def static_method(): - raise ValueError("Error in static method.") - - -def test_auto_decorate_class_methods(caplog): - test_obj = TestClass() - - # Test the instance method - test_obj.instance_method() - assert "Error in instance method." in caplog.text - caplog.clear() - - # Test the class method - TestClass.class_method() - assert "Error in class method." in caplog.text - caplog.clear() - - # Test the static method - TestClass.static_method() - assert "Error in static method." in caplog.text - caplog.clear() - - # Test the excluded instance method that should raise an error - with pytest.raises(ValueError, match="Error in instance method."): - test_obj.excluded_instance_method() diff --git a/tests/test_error_parsing.py b/tests/test_error_parsing.py deleted file mode 100644 index a92cc8b43..000000000 --- a/tests/test_error_parsing.py +++ /dev/null @@ -1,77 +0,0 @@ -"""@private""" - -from langfuse.request import APIErrors, APIError -from langfuse.parse_error import ( - generate_error_message, - generate_error_message_fern, -) -from langfuse.api.resources.commons.errors import ( - AccessDeniedError, - MethodNotAllowedError, - NotFoundError, - UnauthorizedError, -) -from langfuse.api.core import ApiError -from langfuse.api.resources.health.errors import ServiceUnavailableError - - -def test_generate_error_message_api_error(): - exception = APIError(message="Test API error", status="500") - expected_message = "API error occurred: Internal server error occurred. For help, please contact support: https://langfuse.com/support" - assert expected_message in generate_error_message(exception) - - -def test_generate_error_message_api_errors(): - errors = [ - APIError(status=400, message="Bad request", details="Invalid input"), - APIError(status=401, message="Unauthorized", details="Invalid credentials"), - ] - exception = APIErrors(errors) - expected_message = ( - "API errors occurred: " - "Bad request. Please check your request for any missing or incorrect parameters. Refer to our API docs: https://api.reference.langfuse.com for details.\n" - "Unauthorized. Please check your public/private host settings. Refer to our installation and setup guide: https://langfuse.com/docs/sdk/typescript/guide for details on SDK configuration." - ) - assert expected_message in generate_error_message(exception) - - -def test_generate_error_message_generic_exception(): - exception = Exception("Generic error") - expected_message = "Unexpected error occurred. Please check your request and contact support: https://langfuse.com/support." - assert generate_error_message(exception) == expected_message - - -def test_generate_error_message_access_denied_error(): - exception = AccessDeniedError(body={}) - expected_message = "Forbidden. Please check your access control settings. Refer to our RBAC docs: https://langfuse.com/docs/rbac for details." - assert generate_error_message_fern(exception) == expected_message - - -def test_generate_error_message_method_not_allowed_error(): - exception = MethodNotAllowedError(body={}) - expected_message = "Unexpected error occurred. Please check your request and contact support: https://langfuse.com/support." - assert generate_error_message_fern(exception) == expected_message - - -def test_generate_error_message_not_found_error(): - exception = NotFoundError(body={}) - expected_message = "Internal error occurred. This is an unusual occurrence and we are monitoring it closely. For help, please contact support: https://langfuse.com/support." - assert generate_error_message_fern(exception) == expected_message - - -def test_generate_error_message_unauthorized_error(): - exception = UnauthorizedError(body={}) - expected_message = "Unauthorized. Please check your public/private host settings. Refer to our installation and setup guide: https://langfuse.com/docs/sdk/typescript/guide for details on SDK configuration." - assert generate_error_message_fern(exception) == expected_message - - -def test_generate_error_message_service_unavailable_error(): - exception = ServiceUnavailableError() - expected_message = "Service unavailable. This is an unusual occurrence and we are monitoring it closely. For help, please contact support: https://langfuse.com/support." - assert generate_error_message_fern(exception) == expected_message - - -def test_generate_error_message_generic(): - exception = ApiError(status_code=503) - expected_message = "Service unavailable. This is an unusual occurrence and we are monitoring it closely. For help, please contact support: https://langfuse.com/support." - assert generate_error_message_fern(exception) == expected_message diff --git a/tests/test_extract_model.py b/tests/test_extract_model.py deleted file mode 100644 index 01990da92..000000000 --- a/tests/test_extract_model.py +++ /dev/null @@ -1,153 +0,0 @@ -from typing import Any -from unittest.mock import MagicMock - -import pytest -from langchain.schema.messages import HumanMessage -from langchain_anthropic import Anthropic, ChatAnthropic -from langchain_aws import BedrockLLM, ChatBedrock -from langchain_community.chat_models import ( - ChatCohere, - ChatTongyi, -) -from langchain_community.chat_models.fake import FakeMessagesListChatModel - -# from langchain_huggingface.llms import HuggingFacePipeline -from langchain_community.llms.textgen import TextGen -from langchain_core.load.dump import default -from langchain_google_vertexai import ChatVertexAI -from langchain_groq import ChatGroq -from langchain_mistralai.chat_models import ChatMistralAI -from langchain_ollama import ChatOllama, OllamaLLM -from langchain_openai import ( - AzureChatOpenAI, - ChatOpenAI, - OpenAI, -) - -from langfuse.callback import CallbackHandler -from langfuse.extract_model import _extract_model_name -from tests.utils import get_api - - -@pytest.mark.parametrize( - "expected_model,model", - [ - ( - "mixtral-8x7b-32768", - ChatGroq( - temperature=0, model_name="mixtral-8x7b-32768", groq_api_key="something" - ), - ), - ("llama3", OllamaLLM(model="llama3")), - ("llama3", ChatOllama(model="llama3")), - ( - None, - FakeMessagesListChatModel(responses=[HumanMessage("Hello, how are you?")]), - ), - ( - "mistralai", - ChatMistralAI(mistral_api_key="mistral_api_key", model="mistralai"), - ), - ( - "text-gen", - TextGen(model_url="some-url"), - ), # local deployments, does not have a model name - ("claude-2", ChatAnthropic(model_name="claude-2")), - ( - "claude-3-sonnet-20240229", - ChatAnthropic(model="claude-3-sonnet-20240229"), - ), - ("claude-2", Anthropic()), - ("claude-2", Anthropic()), - ("command", ChatCohere(model="command", cohere_api_key="command")), - (None, ChatTongyi(dashscope_api_key="dash")), - ( - "amazon.titan-tg1-large", - BedrockLLM( - model="amazon.titan-tg1-large", - region="us-east-1", - client=MagicMock(), - ), - ), - ( - "anthropic.claude-3-sonnet-20240229-v1:0", - ChatBedrock( - model_id="anthropic.claude-3-sonnet-20240229-v1:0", - region_name="us-east-1", - client=MagicMock(), - ), - ), - ( - "claude-1", - BedrockLLM( - model="claude-1", - region="us-east-1", - client=MagicMock(), - ), - ), - ], -) -def test_models(expected_model: str, model: Any): - serialized = default(model) - model_name = _extract_model_name(serialized) - assert model_name == expected_model - - -# all models here need to be tested here because we take the model from the kwargs / invocation_params or we need to make an actual call for setup -@pytest.mark.parametrize( - "expected_model,model", - [ - ("gpt-3.5-turbo-0125", ChatOpenAI()), - ("gpt-3.5-turbo-instruct", OpenAI()), - ( - "gpt-3.5-turbo", - AzureChatOpenAI( - openai_api_version="2023-05-15", - model="gpt-3.5-turbo", - azure_deployment="your-deployment-name", - azure_endpoint="https://your-endpoint-name.azurewebsites.net", - ), - ), - # ( - # "gpt2", - # HuggingFacePipeline( - # model_id="gpt2", - # model_kwargs={ - # "max_new_tokens": 512, - # "top_k": 30, - # "temperature": 0.1, - # "repetition_penalty": 1.03, - # }, - # ), - # ), - ( - "qwen-72b-chat", - ChatTongyi(model="qwen-72b-chat", dashscope_api_key="dashscope"), - ), - ( - "gemini", - ChatVertexAI( - model_name="gemini", credentials=MagicMock(), project="some-project" - ), - ), - ], -) -def test_entire_llm_call(expected_model, model): - callback = CallbackHandler() - try: - # LLM calls are failing, because of missing API keys etc. - # However, we are still able to extract the model names beforehand. - model.invoke("Hello, how are you?", config={"callbacks": [callback]}) - except Exception as e: - print(e) - pass - - callback.flush() - api = get_api() - - trace = api.trace.get(callback.get_trace_id()) - - assert len(trace.observations) == 1 - - generation = list(filter(lambda o: o.type == "GENERATION", trace.observations))[0] - assert generation.model == expected_model diff --git a/tests/test_extract_model_langchain_openai.py b/tests/test_extract_model_langchain_openai.py deleted file mode 100644 index cf9c8ba25..000000000 --- a/tests/test_extract_model_langchain_openai.py +++ /dev/null @@ -1,51 +0,0 @@ -from langchain_openai import AzureChatOpenAI, ChatOpenAI, OpenAI -import pytest - -from langfuse.callback import CallbackHandler -from tests.utils import get_api - - -@pytest.mark.parametrize( # noqa: F821 - "expected_model,model", - [ - ("gpt-3.5-turbo", ChatOpenAI()), - ("gpt-3.5-turbo-instruct", OpenAI()), - ( - "gpt-3.5-turbo", - AzureChatOpenAI( - openai_api_version="2023-05-15", - model="gpt-3.5-turbo", - azure_deployment="your-deployment-name", - azure_endpoint="https://your-endpoint-name.azurewebsites.net", - ), - ), - # # default model is now set a s azure-deployment since langchain > 0.3.0 - # ( - # "gpt-3.5-turbo-instruct", - # AzureOpenAI( - # openai_api_version="2023-05-15", - # azure_deployment="your-deployment-name", - # azure_endpoint="https://your-endpoint-name.azurewebsites.net", - # ), - # ), - ], -) -def test_entire_llm_call_using_langchain_openai(expected_model, model): - callback = CallbackHandler() - try: - # LLM calls are failing, because of missing API keys etc. - # However, we are still able to extract the model names beforehand. - model.invoke("Hello, how are you?", config={"callbacks": [callback]}) - except Exception as e: - print(e) - pass - - callback.flush() - api = get_api() - - trace = api.trace.get(callback.get_trace_id()) - - assert len(trace.observations) == 1 - - generation = list(filter(lambda o: o.type == "GENERATION", trace.observations))[0] - assert expected_model in generation.model diff --git a/tests/test_json.py b/tests/test_json.py deleted file mode 100644 index e9bd887d3..000000000 --- a/tests/test_json.py +++ /dev/null @@ -1,139 +0,0 @@ -import builtins -from dataclasses import dataclass -import importlib -import json -from datetime import datetime, timezone, date -from unittest.mock import patch -import uuid -from bson import ObjectId - -import pytest -from langchain.schema.messages import HumanMessage -from pydantic import BaseModel - -import langfuse -from langfuse.api.resources.commons.types.observation_level import ObservationLevel -from langfuse.serializer import EventSerializer - - -class TestModel(BaseModel): - foo: str - bar: datetime - - -def test_json_encoder(): - """Test that the JSON encoder encodes datetimes correctly.""" - message = HumanMessage(content="I love programming!") - obj = { - "foo": "bar", - "bar": datetime(2021, 1, 1, 0, 0, 0, tzinfo=timezone.utc), - "date": date(2024, 1, 1), - "messages": [message], - } - - result = json.dumps(obj, cls=EventSerializer) - assert ( - '{"foo": "bar", "bar": "2021-01-01T00:00:00Z", "date": "2024-01-01", "messages": [{"content": "I love programming!", "additional_kwargs": {}, "response_metadata": {}, "type": "human", "name": null, "id": null, "example": false}]}' - in result - ) - - -def test_json_decoder_pydantic(): - obj = TestModel(foo="bar", bar=datetime(2021, 1, 1, 0, 0, 0, tzinfo=timezone.utc)) - assert ( - json.dumps(obj, cls=EventSerializer) - == '{"foo": "bar", "bar": "2021-01-01T00:00:00Z"}' - ) - - -@pytest.fixture -def event_serializer(): - return EventSerializer() - - -def test_json_decoder_without_langchain_serializer(): - with patch.dict("sys.modules", {"langchain.load.serializable": None}): - model = TestModel( - foo="John", bar=datetime(2021, 1, 1, 0, 0, 0, tzinfo=timezone.utc) - ) - result = json.dumps(model, cls=EventSerializer) - assert result == '{"foo": "John", "bar": "2021-01-01T00:00:00Z"}' - - -@pytest.fixture -def hide_available_langchain(monkeypatch): - import_orig = builtins.__import__ - - def mocked_import(name, *args, **kwargs): - if name == "langchain" or name == "langchain.load.serializable": - raise ImportError() - return import_orig(name, *args, **kwargs) - - monkeypatch.setattr(builtins, "__import__", mocked_import) - - -@pytest.mark.usefixtures("hide_available_langchain") -def test_json_decoder_without_langchain_serializer_with_langchain_message(): - with pytest.raises(ImportError): - import langchain # noqa - - with pytest.raises(ImportError): - from langchain.load.serializable import Serializable # noqa - - importlib.reload(langfuse) - obj = TestModel(foo="bar", bar=datetime(2021, 1, 1, 0, 0, 0, tzinfo=timezone.utc)) - result = json.dumps(obj, cls=EventSerializer) - assert result == '{"foo": "bar", "bar": "2021-01-01T00:00:00Z"}' - - -@pytest.mark.usefixtures("hide_available_langchain") -def test_json_decoder_without_langchain_serializer_with_none(): - with pytest.raises(ImportError): - import langchain # noqa - - with pytest.raises(ImportError): - from langchain.load.serializable import Serializable # noqa - - importlib.reload(langfuse) - result = json.dumps(None, cls=EventSerializer) - default = json.dumps(None) - assert result == "null" - assert result == default - - -def test_data_class(): - @dataclass - class InventoryItem: - """Class for keeping track of an item in inventory.""" - - name: str - unit_price: float - quantity_on_hand: int = 0 - - item = InventoryItem("widget", 3.0, 10) - - result = json.dumps(item, cls=EventSerializer) - - assert result == '{"name": "widget", "unit_price": 3.0, "quantity_on_hand": 10}' - - -def test_data_uuid(): - test_id = uuid.uuid4() - - result = json.dumps(test_id, cls=EventSerializer) - - assert result == f'"{str(test_id)}"' - - -def test_observation_level(): - result = json.dumps(ObservationLevel.ERROR, cls=EventSerializer) - - assert result == '"ERROR"' - - -def test_mongo_cursor(): - test_id = ObjectId("5f3e3e3e3e3e3e3e3e3e3e3e") - - result = json.dumps(test_id, cls=EventSerializer) - - assert isinstance(result, str) diff --git a/tests/test_langchain.py b/tests/test_langchain.py index 56a56f69d..e69de29bb 100644 --- a/tests/test_langchain.py +++ b/tests/test_langchain.py @@ -1,2371 +0,0 @@ -import os -import random -import string -import time -from time import sleep -from typing import Any, Dict, List, Literal, Mapping, Optional - -import pytest -from langchain.agents import AgentType, initialize_agent -from langchain.chains import ( - ConversationalRetrievalChain, - ConversationChain, - LLMChain, - RetrievalQA, - SimpleSequentialChain, -) -from langchain.chains.openai_functions import create_openai_fn_chain -from langchain.chains.summarize import load_summarize_chain -from langchain.memory import ConversationBufferMemory -from langchain.prompts import ChatPromptTemplate, PromptTemplate -from langchain.schema import Document, HumanMessage, SystemMessage -from langchain.text_splitter import CharacterTextSplitter -from langchain_anthropic import Anthropic -from langchain_community.agent_toolkits.load_tools import load_tools -from langchain_community.document_loaders import TextLoader -from langchain_community.embeddings import OpenAIEmbeddings -from langchain_community.llms.huggingface_hub import HuggingFaceHub -from langchain_community.vectorstores import Chroma -from langchain_core.callbacks.manager import CallbackManagerForLLMRun -from langchain_core.language_models.llms import LLM -from langchain_core.output_parsers import StrOutputParser -from langchain_core.runnables.base import RunnableLambda -from langchain_core.tools import StructuredTool, tool -from langchain_openai import AzureChatOpenAI, ChatOpenAI, OpenAI -from langgraph.checkpoint.memory import MemorySaver -from langgraph.graph import END, START, MessagesState, StateGraph -from langgraph.prebuilt import ToolNode -from pydantic.v1 import BaseModel, Field - -from langfuse.callback import CallbackHandler -from langfuse.callback.langchain import LANGSMITH_TAG_HIDDEN -from langfuse.client import Langfuse -from tests.api_wrapper import LangfuseAPI -from tests.utils import create_uuid, encode_file_to_base64, get_api - - -def test_callback_init(): - callback = CallbackHandler(release="something", session_id="session-id") - assert callback.trace is None - assert not callback.runs - assert callback.langfuse.release == "something" - assert callback.session_id == "session-id" - assert callback._task_manager is not None - - -def test_callback_kwargs(): - callback = CallbackHandler( - trace_name="trace-name", - release="release", - version="version", - session_id="session-id", - user_id="user-id", - metadata={"key": "value"}, - tags=["tag1", "tag2"], - ) - - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY"), max_tokens=5) - prompt_template = PromptTemplate(input_variables=["input"], template="""{input}""") - test_chain = LLMChain(llm=llm, prompt=prompt_template) - test_chain.run("Hi", callbacks=[callback]) - callback.flush() - - trace_id = callback.get_trace_id() - - trace = get_api().trace.get(trace_id) - assert trace.input is not None - assert trace.output is not None - assert trace.metadata == {"key": "value"} - assert trace.tags == ["tag1", "tag2"] - assert trace.release == "release" - assert trace.version == "version" - assert trace.session_id == "session-id" - assert trace.user_id == "user-id" - - -def test_langfuse_span(): - trace_id = create_uuid() - span_id = create_uuid() - langfuse = Langfuse(debug=False) - trace = langfuse.trace(id=trace_id) - span = trace.span(id=span_id) - - handler = span.get_langchain_handler() - - assert handler.get_trace_id() == trace_id - assert handler.root_span.id == span_id - assert handler._task_manager is not None - - -def test_callback_generated_from_trace_chain(): - langfuse = Langfuse(debug=True) - - trace_id = create_uuid() - - trace = langfuse.trace(id=trace_id, name=trace_id) - - handler = trace.get_langchain_handler() - - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - - trace = get_api().trace.get(trace_id) - - assert trace.input is None - assert trace.output is None - assert handler.get_trace_id() == trace_id - - assert len(trace.observations) == 2 - assert trace.id == trace_id - - langchain_span = list( - filter( - lambda o: o.type == "SPAN" and o.name == "LLMChain", - trace.observations, - ) - )[0] - - assert langchain_span.parent_observation_id is None - assert langchain_span.input is not None - assert langchain_span.output is not None - - langchain_generation_span = list( - filter( - lambda o: o.type == "GENERATION" and o.name == "OpenAI", - trace.observations, - ) - )[0] - - assert langchain_generation_span.parent_observation_id == langchain_span.id - assert langchain_generation_span.usage_details["input"] > 0 - assert langchain_generation_span.usage_details["output"] > 0 - assert langchain_generation_span.usage_details["total"] > 0 - assert langchain_generation_span.input is not None - assert langchain_generation_span.input != "" - assert langchain_generation_span.output is not None - assert langchain_generation_span.output != "" - - -def test_callback_generated_from_trace_chat(): - langfuse = Langfuse(debug=False) - - trace_id = create_uuid() - - trace = langfuse.trace(id=trace_id, name=trace_id) - handler = trace.get_langchain_handler() - - chat = ChatOpenAI(temperature=0) - - messages = [ - SystemMessage( - content="You are a helpful assistant that translates English to French." - ), - HumanMessage( - content="Translate this sentence from English to French. I love programming." - ), - ] - - chat(messages, callbacks=[handler]) - - langfuse.flush() - - trace = get_api().trace.get(trace_id) - - assert trace.input is None - assert trace.output is None - - assert handler.get_trace_id() == trace_id - assert trace.id == trace_id - - assert len(trace.observations) == 1 - - langchain_generation_span = list( - filter( - lambda o: o.type == "GENERATION" and o.name == "ChatOpenAI", - trace.observations, - ) - )[0] - - assert langchain_generation_span.parent_observation_id is None - assert langchain_generation_span.usage_details["input"] > 0 - assert langchain_generation_span.usage_details["output"] > 0 - assert langchain_generation_span.usage_details["total"] > 0 - assert langchain_generation_span.input is not None - assert langchain_generation_span.input != "" - assert langchain_generation_span.output is not None - assert langchain_generation_span.output != "" - - -def test_callback_generated_from_lcel_chain(): - langfuse = Langfuse(debug=False) - - run_name_override = "This is a custom Run Name" - handler = CallbackHandler(debug=False) - - prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}") - model = ChatOpenAI(temperature=0) - - chain = prompt | model - - chain.invoke( - {"topic": "ice cream"}, - config={ - "callbacks": [handler], - "run_name": run_name_override, - }, - ) - - langfuse.flush() - handler.flush() - trace_id = handler.get_trace_id() - trace = get_api().trace.get(trace_id) - - assert trace.name == run_name_override - - -def test_callback_generated_from_span_chain(): - langfuse = Langfuse(debug=False) - - trace_id = create_uuid() - span_id = create_uuid() - - trace = langfuse.trace(id=trace_id, name=trace_id) - span = trace.span(id=span_id, name=span_id) - - handler = span.get_langchain_handler() - - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - - trace = get_api().trace.get(trace_id) - - assert trace.input is None - assert trace.output is None - assert handler.get_trace_id() == trace_id - - assert len(trace.observations) == 3 - assert trace.id == trace_id - - user_span = list( - filter( - lambda o: o.id == span_id, - trace.observations, - ) - )[0] - - assert user_span.input is None - assert user_span.output is None - - assert user_span.input is None - assert user_span.output is None - - langchain_span = list( - filter( - lambda o: o.type == "SPAN" and o.name == "LLMChain", - trace.observations, - ) - )[0] - - assert langchain_span.parent_observation_id == user_span.id - - langchain_generation_span = list( - filter( - lambda o: o.type == "GENERATION" and o.name == "OpenAI", - trace.observations, - ) - )[0] - - assert langchain_generation_span.parent_observation_id == langchain_span.id - assert langchain_generation_span.usage_details["input"] > 0 - assert langchain_generation_span.usage_details["output"] > 0 - assert langchain_generation_span.usage_details["total"] > 0 - assert langchain_generation_span.input is not None - assert langchain_generation_span.input != "" - assert langchain_generation_span.output is not None - assert langchain_generation_span.output != "" - - -def test_callback_generated_from_span_chat(): - langfuse = Langfuse(debug=False) - - trace_id = create_uuid() - span_id = create_uuid() - - trace = langfuse.trace(id=trace_id, name=trace_id) - span = trace.span(id=span_id, name=span_id) - - handler = span.get_langchain_handler() - - chat = ChatOpenAI(temperature=0) - - messages = [ - SystemMessage( - content="You are a helpful assistant that translates English to French." - ), - HumanMessage( - content="Translate this sentence from English to French. I love programming." - ), - ] - - chat(messages, callbacks=[handler]) - - langfuse.flush() - - trace = get_api().trace.get(trace_id) - - assert trace.input is None - assert trace.output is None - - assert handler.get_trace_id() == trace_id - assert trace.id == trace_id - - assert len(trace.observations) == 2 - - user_span = list( - filter( - lambda o: o.id == span_id, - trace.observations, - ) - )[0] - - assert user_span.input is None - assert user_span.output is None - - langchain_generation_span = list( - filter( - lambda o: o.type == "GENERATION" and o.name == "ChatOpenAI", - trace.observations, - ) - )[0] - - assert langchain_generation_span.parent_observation_id == user_span.id - assert langchain_generation_span.usage_details["input"] > 0 - assert langchain_generation_span.usage_details["output"] > 0 - assert langchain_generation_span.usage_details["total"] > 0 - assert langchain_generation_span.input is not None - assert langchain_generation_span.input != "" - assert langchain_generation_span.output is not None - assert langchain_generation_span.output != "" - - -@pytest.mark.skip(reason="missing api key") -def test_callback_generated_from_trace_azure_chat(): - api_wrapper = LangfuseAPI() - langfuse = Langfuse(debug=False) - - trace_id = create_uuid() - trace = langfuse.trace(id=trace_id) - - handler = trace.getNewHandler() - - llm = AzureChatOpenAI( - openai_api_base="AZURE_OPENAI_ENDPOINT", - openai_api_version="2023-05-15", - deployment_name="gpt-4", - openai_api_key="AZURE_OPENAI_API_KEY", - openai_api_type="azure", - model_version="0613", - temperature=0, - ) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - - trace = api_wrapper.get_trace(trace_id) - - assert handler.get_trace_id() == trace_id - assert len(trace["observations"]) == 2 - assert trace["id"] == trace_id - - -@pytest.mark.skip(reason="missing api key") -def test_mistral(): - from langchain_core.messages import HumanMessage - from langchain_mistralai.chat_models import ChatMistralAI - - callback = CallbackHandler(debug=False) - - chat = ChatMistralAI(model="mistral-small", callbacks=[callback]) - messages = [HumanMessage(content="say a brief hello")] - chat.invoke(messages) - - callback.flush() - - trace_id = callback.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.id == trace_id - assert len(trace.observations) == 2 - - generation = list(filter(lambda o: o.type == "GENERATION", trace.observations))[0] - assert generation.model == "mistral-small" - - -@pytest.mark.skip(reason="missing api key") -def test_vertx(): - from langchain.llms import VertexAI - - callback = CallbackHandler(debug=False) - - llm = VertexAI(callbacks=[callback]) - llm.predict("say a brief hello", callbacks=[callback]) - - callback.flush() - - trace_id = callback.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.id == trace_id - assert len(trace.observations) == 2 - - generation = list(filter(lambda o: o.type == "GENERATION", trace.observations))[0] - assert generation.model == "text-bison" - - -@pytest.mark.skip(reason="rate limits") -def test_callback_generated_from_trace_anthropic(): - langfuse = Langfuse(debug=False) - - trace_id = create_uuid() - trace = langfuse.trace(id=trace_id) - - handler = trace.getNewHandler() - - llm = Anthropic( - model="claude-instant-1.2", - ) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - - trace = get_api().trace.get(trace_id) - - assert handler.get_trace_id() == trace_id - assert len(trace.observations) == 2 - assert trace.id == trace_id - for observation in trace.observations: - if observation.type == "GENERATION": - assert observation.usage_details["input"] > 0 - assert observation.usage_details["output"] > 0 - assert observation.usage_details["total"] > 0 - assert observation.output is not None - assert observation.output != "" - assert isinstance(observation.input, str) is True - assert isinstance(observation.output, str) is True - assert observation.input != "" - assert observation.model == "claude-instant-1.2" - - -def test_basic_chat_openai(): - callback = CallbackHandler(debug=False) - - chat = ChatOpenAI(temperature=0) - - messages = [ - SystemMessage( - content="You are a helpful assistant that translates English to French." - ), - HumanMessage( - content="Translate this sentence from English to French. I love programming." - ), - ] - - chat(messages, callbacks=[callback]) - callback.flush() - - trace_id = callback.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.id == trace_id - assert len(trace.observations) == 1 - - assert trace.output == trace.observations[0].output - assert trace.input == trace.observations[0].input - - assert trace.observations[0].input == [ - { - "role": "system", - "content": "You are a helpful assistant that translates English to French.", - }, - { - "role": "user", - "content": "Translate this sentence from English to French. I love programming.", - }, - ] - assert trace.observations[0].output["role"] == "assistant" - - -def test_basic_chat_openai_based_on_trace(): - from langchain.schema import HumanMessage, SystemMessage - - trace_id = create_uuid() - - langfuse = Langfuse(debug=False) - trace = langfuse.trace(id=trace_id) - - callback = trace.get_langchain_handler() - - chat = ChatOpenAI(temperature=0) - - messages = [ - SystemMessage( - content="You are a helpful assistant that translates English to French." - ), - HumanMessage( - content="Translate this sentence from English to French. I love programming." - ), - ] - - chat(messages, callbacks=[callback]) - callback.flush() - - trace_id = callback.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.id == trace_id - assert len(trace.observations) == 1 - - -def test_callback_from_trace_with_trace_update(): - langfuse = Langfuse(debug=False) - - trace_id = create_uuid() - trace = langfuse.trace(id=trace_id) - - handler = trace.get_langchain_handler(update_parent=True) - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - - trace_id = handler.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.input is not None - assert trace.output is not None - - assert len(trace.observations) == 2 - assert handler.get_trace_id() == trace_id - assert trace.id == trace_id - - generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) - assert len(generations) > 0 - for generation in generations: - assert generation.input is not None - assert generation.output is not None - assert generation.usage_details["total"] is not None - assert generation.usage_details["input"] is not None - assert generation.usage_details["output"] is not None - - -def test_callback_from_span_with_span_update(): - langfuse = Langfuse(debug=False) - - trace_id = create_uuid() - span_id = create_uuid() - trace = langfuse.trace(id=trace_id) - span = trace.span(id=span_id) - - handler = span.get_langchain_handler(update_parent=True) - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - - trace_id = handler.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert trace.input is None - assert trace.output is None - assert trace.metadata == {} - - assert len(trace.observations) == 3 - assert handler.get_trace_id() == trace_id - assert trace.id == trace_id - assert handler.root_span.id == span_id - - root_span_observation = [o for o in trace.observations if o.id == span_id][0] - assert root_span_observation.input is not None - assert root_span_observation.output is not None - - generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) - assert len(generations) > 0 - for generation in generations: - assert generation.input is not None - assert generation.output is not None - assert generation.usage_details["total"] is not None - assert generation.usage_details["input"] is not None - assert generation.usage_details["output"] is not None - - -def test_callback_from_trace_simple_chain(): - langfuse = Langfuse(debug=False) - - trace_id = create_uuid() - trace = langfuse.trace(id=trace_id) - - handler = trace.getNewHandler() - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - - trace_id = handler.get_trace_id() - - trace = get_api().trace.get(trace_id) - assert trace.input is None - assert trace.output is None - - assert len(trace.observations) == 2 - assert handler.get_trace_id() == trace_id - assert trace.id == trace_id - - generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) - assert len(generations) > 0 - for generation in generations: - assert generation.input is not None - assert generation.output is not None - assert generation.usage_details["total"] is not None - assert generation.usage_details["input"] is not None - assert generation.usage_details["output"] is not None - - -def test_next_span_id_from_trace_simple_chain(): - api_wrapper = LangfuseAPI() - langfuse = Langfuse() - - trace_id = create_uuid() - trace = langfuse.trace(id=trace_id) - - handler = trace.getNewHandler() - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - synopsis_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - next_span_id = create_uuid() - handler.setNextSpan(next_span_id) - - synopsis_chain.run("Comedy at sunset on the beach", callbacks=[handler]) - - langfuse.flush() - - trace_id = handler.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - assert len(trace["observations"]) == 4 - assert handler.get_trace_id() == trace_id - assert trace["id"] == trace_id - - assert any( - observation["id"] == next_span_id for observation in trace["observations"] - ) - for observation in trace["observations"]: - if observation["type"] == "GENERATION": - assert observation["promptTokens"] > 0 - assert observation["completionTokens"] > 0 - assert observation["totalTokens"] > 0 - assert observation["input"] is not None - assert observation["input"] != "" - assert observation["output"] is not None - assert observation["output"] != "" - - -def test_callback_sequential_chain(): - handler = CallbackHandler(debug=False) - - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - template = """You are a play critic from the New York Times. - Given the synopsis of play, it is your job to write a review for that play. - - Play Synopsis: - {synopsis} - Review from a New York Times play critic of the above play:""" - prompt_template = PromptTemplate(input_variables=["synopsis"], template=template) - review_chain = LLMChain(llm=llm, prompt=prompt_template) - - overall_chain = SimpleSequentialChain( - chains=[synopsis_chain, review_chain], - ) - overall_chain.run("Tragedy at sunset on the beach", callbacks=[handler]) - - handler.flush() - - trace_id = handler.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert len(trace.observations) == 5 - assert trace.id == trace_id - - for observation in trace.observations: - if observation.type == "GENERATION": - assert observation.usage_details["input"] > 0 - assert observation.usage_details["output"] > 0 - assert observation.usage_details["total"] > 0 - assert observation.input is not None - assert observation.input != "" - assert observation.output is not None - assert observation.output != "" - - -def test_stuffed_chain(): - with open("./static/state_of_the_union_short.txt", encoding="utf-8") as f: - api_wrapper = LangfuseAPI() - handler = CallbackHandler(debug=False) - - text = f.read() - docs = [Document(page_content=text)] - llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") - - template = """ - Compose a concise and a brief summary of the following text: - TEXT: `{text}` - """ - - prompt = PromptTemplate(input_variables=["text"], template=template) - - chain = load_summarize_chain( - llm, chain_type="stuff", prompt=prompt, verbose=False - ) - - chain.run(docs, callbacks=[handler]) - - handler.flush() - - trace_id = handler.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - assert len(trace["observations"]) == 3 - for observation in trace["observations"]: - if observation["type"] == "GENERATION": - assert observation["promptTokens"] > 0 - assert observation["completionTokens"] > 0 - assert observation["totalTokens"] > 0 - assert observation["input"] is not None - assert observation["input"] != "" - assert observation["output"] is not None - assert observation["output"] != "" - - -def test_callback_retriever(): - api_wrapper = LangfuseAPI() - handler = CallbackHandler(debug=False) - - loader = TextLoader("./static/state_of_the_union.txt", encoding="utf8") - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - - documents = loader.load() - text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) - texts = text_splitter.split_documents(documents) - - embeddings = OpenAIEmbeddings(openai_api_key=os.environ.get("OPENAI_API_KEY")) - docsearch = Chroma.from_documents(texts, embeddings) - - query = "What did the president say about Ketanji Brown Jackson" - - chain = RetrievalQA.from_chain_type( - llm, - retriever=docsearch.as_retriever(), - ) - - chain.run(query, callbacks=[handler]) - handler.flush() - - trace_id = handler.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - assert len(trace["observations"]) == 5 - for observation in trace["observations"]: - if observation["type"] == "GENERATION": - assert observation["promptTokens"] > 0 - assert observation["completionTokens"] > 0 - assert observation["totalTokens"] > 0 - assert observation["input"] is not None - assert observation["input"] != "" - assert observation["output"] is not None - assert observation["output"] != "" - - -def test_callback_retriever_with_sources(): - api_wrapper = LangfuseAPI() - handler = CallbackHandler(debug=False) - - loader = TextLoader("./static/state_of_the_union.txt", encoding="utf8") - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - - documents = loader.load() - text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) - texts = text_splitter.split_documents(documents) - - embeddings = OpenAIEmbeddings(openai_api_key=os.environ.get("OPENAI_API_KEY")) - docsearch = Chroma.from_documents(texts, embeddings) - - query = "What did the president say about Ketanji Brown Jackson" - - chain = RetrievalQA.from_chain_type( - llm, retriever=docsearch.as_retriever(), return_source_documents=True - ) - - chain(query, callbacks=[handler]) - handler.flush() - - trace_id = handler.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - assert len(trace["observations"]) == 5 - for observation in trace["observations"]: - if observation["type"] == "GENERATION": - assert observation["promptTokens"] > 0 - assert observation["completionTokens"] > 0 - assert observation["totalTokens"] > 0 - assert observation["input"] is not None - assert observation["input"] != "" - assert observation["output"] is not None - assert observation["output"] != "" - - -def test_callback_retriever_conversational_with_memory(): - handler = CallbackHandler(debug=False) - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - conversation = ConversationChain( - llm=llm, verbose=True, memory=ConversationBufferMemory(), callbacks=[handler] - ) - conversation.predict(input="Hi there!", callbacks=[handler]) - handler.flush() - - trace = get_api().trace.get(handler.get_trace_id()) - - generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) - assert len(generations) == 1 - - for generation in generations: - assert generation.input is not None - assert generation.output is not None - assert generation.input != "" - assert generation.output != "" - assert generation.usage_details["total"] is not None - assert generation.usage_details["input"] is not None - assert generation.usage_details["output"] is not None - - -def test_callback_retriever_conversational(): - api_wrapper = LangfuseAPI() - handler = CallbackHandler(debug=False) - - loader = TextLoader("./static/state_of_the_union.txt", encoding="utf8") - - documents = loader.load() - text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) - texts = text_splitter.split_documents(documents) - - embeddings = OpenAIEmbeddings(openai_api_key=os.environ.get("OPENAI_API_KEY")) - docsearch = Chroma.from_documents(texts, embeddings) - - query = "What did the president say about Ketanji Brown Jackson" - - chain = ConversationalRetrievalChain.from_llm( - ChatOpenAI( - openai_api_key=os.environ.get("OPENAI_API_KEY"), - temperature=0.5, - model="gpt-3.5-turbo-16k", - ), - docsearch.as_retriever(search_kwargs={"k": 6}), - return_source_documents=True, - ) - - chain({"question": query, "chat_history": []}, callbacks=[handler]) - handler.flush() - - trace_id = handler.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - assert len(trace["observations"]) == 5 - for observation in trace["observations"]: - if observation["type"] == "GENERATION": - assert observation["promptTokens"] > 0 - assert observation["completionTokens"] > 0 - assert observation["totalTokens"] > 0 - assert observation["input"] is not None - assert observation["input"] != "" - assert observation["output"] is not None - assert observation["output"] != "" - - -def test_callback_simple_openai(): - handler = CallbackHandler() - - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - - text = "What would be a good company name for a company that makes colorful socks?" - - llm.predict(text, callbacks=[handler]) - - handler.flush() - - trace_id = handler.get_trace_id() - - trace = get_api().trace.get(trace_id) - - assert len(trace.observations) == 1 - - for observation in trace.observations: - if observation.type == "GENERATION": - print(observation.usage_details) - assert observation.usage_details["input"] > 0 - assert observation.usage_details["output"] > 0 - assert observation.usage_details["total"] > 0 - assert observation.input is not None - assert observation.input != "" - assert observation.output is not None - assert observation.output != "" - - -def test_callback_multiple_invocations_on_different_traces(): - handler = CallbackHandler(debug=False) - - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - - text = "What would be a good company name for a company that makes colorful socks?" - - llm.predict(text, callbacks=[handler]) - - trace_id_one = handler.get_trace_id() - - llm.predict(text, callbacks=[handler]) - - trace_id_two = handler.get_trace_id() - - handler.flush() - - assert trace_id_one != trace_id_two - - trace_one = get_api().trace.get(trace_id_one) - trace_two = get_api().trace.get(trace_id_two) - - for test_data in [ - {"trace": trace_one, "expected_trace_id": trace_id_one}, - {"trace": trace_two, "expected_trace_id": trace_id_two}, - ]: - assert len(test_data["trace"].observations) == 1 - assert test_data["trace"].id == test_data["expected_trace_id"] - for observation in test_data["trace"].observations: - if observation.type == "GENERATION": - assert observation.usage_details["input"] > 0 - assert observation.usage_details["output"] > 0 - assert observation.usage_details["total"] > 0 - assert observation.input is not None - assert observation.input != "" - assert observation.output is not None - assert observation.output != "" - - -@pytest.mark.skip(reason="inference cost") -def test_callback_simple_openai_streaming(): - api_wrapper = LangfuseAPI() - handler = CallbackHandler(debug=False) - - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY"), streaming=False) - - text = "What would be a good company name for a company that makes laptops?" - - llm.predict(text, callbacks=[handler]) - - handler.flush() - - trace_id = handler.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - generation = trace["observations"][1] - - assert generation["promptTokens"] is not None - assert generation["completionTokens"] is not None - assert generation["totalTokens"] is not None - - assert len(trace["observations"]) == 2 - for observation in trace["observations"]: - if observation["type"] == "GENERATION": - assert observation["promptTokens"] > 0 - assert observation["completionTokens"] > 0 - assert observation["totalTokens"] > 0 - assert observation["input"] is not None - assert observation["input"] != "" - assert observation["output"] is not None - assert observation["output"] != "" - - -@pytest.mark.skip(reason="no serpapi setup in CI") -def test_tools(): - handler = CallbackHandler(debug=False) - - llm = ChatOpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - - tools = load_tools(["serpapi", "llm-math"], llm=llm) - - agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION) - - agent.run( - "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?", - callbacks=[handler], - ) - - handler.flush() - - trace_id = handler.get_trace_id() - - trace = get_api().trace.get(trace_id) - assert trace.id == trace_id - assert len(trace.observations) > 2 - - generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) - assert len(generations) > 0 - - for generation in generations: - assert generation.input is not None - assert generation.output is not None - assert generation.input != "" - assert generation.output != "" - assert generation.total_tokens is not None - assert generation.prompt_tokens is not None - assert generation.completion_tokens is not None - - -@pytest.mark.skip(reason="inference cost") -def test_callback_huggingface_hub(): - api_wrapper = LangfuseAPI() - handler = CallbackHandler(debug=False) - - def initialize_huggingface_llm(prompt: PromptTemplate) -> LLMChain: - repo_id = "google/flan-t5-small" - # Experiment with the max_length parameter and temperature - llm = HuggingFaceHub( - repo_id=repo_id, model_kwargs={"temperature": 0.1, "max_length": 500} - ) - return LLMChain(prompt=prompt, llm=llm) - - hugging_chain = initialize_huggingface_llm( - prompt=PromptTemplate( - input_variables=["title"], - template=""" -You are a playwright. Given the title of play, it is your job to write a synopsis for that title. -Title: {title} - """, - ) - ) - - hugging_chain.run(title="Mission to Mars", callbacks=[handler]) - - handler.langfuse.flush() - - trace_id = handler.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - assert len(trace["observations"]) == 2 - for observation in trace["observations"]: - if observation["type"] == "GENERATION": - assert observation["promptTokens"] > 0 - assert observation["completionTokens"] > 0 - assert observation["totalTokens"] > 0 - assert observation["input"] is not None - assert observation["input"] != "" - assert observation["output"] is not None - assert observation["output"] != "" - - -def test_callback_openai_functions_python(): - handler = CallbackHandler(debug=False) - assert handler.langfuse.base_url == "http://localhost:3000" - - llm = ChatOpenAI(model="gpt-4", temperature=0) - prompt = ChatPromptTemplate.from_messages( - [ - ( - "system", - "You are a world class algorithm for extracting information in structured formats.", - ), - ( - "human", - "Use the given format to extract information from the following input: {input}", - ), - ("human", "Tip: Make sure to answer in the correct format"), - ] - ) - - class OptionalFavFood(BaseModel): - """Either a food or null.""" - - food: Optional[str] = Field( - None, - description="Either the name of a food or null. Should be null if the food isn't known.", - ) - - def record_person(name: str, age: int, fav_food: OptionalFavFood) -> str: - """Record some basic identifying information about a person. - - Args: - name: The person's name. - age: The person's age in years. - fav_food: An OptionalFavFood object that either contains the person's favorite food or a null value. - Food should be null if it's not known. - """ - return ( - f"Recording person {name} of age {age} with favorite food {fav_food.food}!" - ) - - def record_dog(name: str, color: str, fav_food: OptionalFavFood) -> str: - """Record some basic identifying information about a dog. - - Args: - name: The dog's name. - color: The dog's color. - fav_food: An OptionalFavFood object that either contains the dog's favorite food or a null value. - Food should be null if it's not known. - """ - return f"Recording dog {name} of color {color} with favorite food {fav_food}!" - - chain = create_openai_fn_chain( - [record_person, record_dog], llm, prompt, callbacks=[handler] - ) - chain.run( - "I can't find my dog Henry anywhere, he's a small brown beagle. Could you send a message about him?", - callbacks=[handler], - ) - - handler.langfuse.flush() - - trace = get_api().trace.get(handler.get_trace_id()) - - assert len(trace.observations) == 2 - - generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) - assert len(generations) > 0 - - for generation in generations: - assert generation.input is not None - assert generation.output is not None - assert generation.input == [ - { - "role": "system", - "content": "You are a world class algorithm for extracting information in structured formats.", - }, - { - "role": "user", - "content": "Use the given format to extract information from the following input: I can't find my dog Henry anywhere, he's a small brown beagle. Could you send a message about him?", - }, - { - "role": "user", - "content": "Tip: Make sure to answer in the correct format", - }, - ] - assert generation.output == { - "role": "assistant", - "content": "", - "additional_kwargs": { - "function_call": { - "arguments": '{\n "name": "Henry",\n "color": "brown",\n "fav_food": {\n "food": null\n }\n}', - "name": "record_dog", - }, - "refusal": None, - }, - } - assert generation.usage_details["total"] is not None - assert generation.usage_details["input"] is not None - assert generation.usage_details["output"] is not None - - -def test_agent_executor_chain(): - from langchain.agents import AgentExecutor, create_react_agent - from langchain.tools import tool - - prompt = PromptTemplate.from_template(""" - Answer the following questions as best you can. You have access to the following tools: - - {tools} - - Use the following format: - - Question: the input question you must answer - Thought: you should always think about what to do - Action: the action to take, should be one of [{tool_names}] - Action Input: the input to the action - Observation: the result of the action - ... (this Thought/Action/Action Input/Observation can repeat N times) - Thought: I now know the final answer - Final Answer: the final answer to the original input question - - Begin! - - Question: {input} - Thought:{agent_scratchpad} - """) - - callback = CallbackHandler(debug=True) - llm = OpenAI(temperature=0) - - @tool - def get_word_length(word: str) -> int: - """Returns the length of a word.""" - return len(word) - - tools = [get_word_length] - agent = create_react_agent(llm, tools, prompt) - agent_executor = AgentExecutor(agent=agent, tools=tools, handle_parsing_errors=True) - - agent_executor.invoke( - {"input": "what is the length of the word LangFuse?"}, - config={"callbacks": [callback]}, - ) - - callback.flush() - - trace = get_api().trace.get(callback.get_trace_id()) - - generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) - assert len(generations) > 0 - - for generation in generations: - assert generation.input is not None - assert generation.output is not None - assert generation.input != "" - assert generation.output != "" - assert generation.usage_details["total"] is not None - assert generation.usage_details["input"] is not None - assert generation.usage_details["output"] is not None - - -# def test_create_extraction_chain(): -# import os -# from uuid import uuid4 - -# from langchain.chains import create_extraction_chain -# from langchain.chat_models import ChatOpenAI -# from langchain.document_loaders import TextLoader -# from langchain.embeddings.openai import OpenAIEmbeddings -# from langchain.text_splitter import CharacterTextSplitter -# from langchain.vectorstores import Chroma - -# from langfuse.client import Langfuse - -# def create_uuid(): -# return str(uuid4()) - -# langfuse = Langfuse(debug=False, host="http://localhost:3000") - -# trace_id = create_uuid() - -# trace = langfuse.trace(id=trace_id) -# handler = trace.getNewHandler() - -# loader = TextLoader("./static/state_of_the_union.txt", encoding="utf8") - -# documents = loader.load() -# text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) -# texts = text_splitter.split_documents(documents) - -# embeddings = OpenAIEmbeddings(openai_api_key=os.environ.get("OPENAI_API_KEY")) -# vector_search = Chroma.from_documents(texts, embeddings) - -# main_character = vector_search.similarity_search( -# "Who is the main character and what is the summary of the text?" -# ) - -# llm = ChatOpenAI( -# openai_api_key=os.getenv("OPENAI_API_KEY"), -# temperature=0, -# streaming=False, -# model="gpt-3.5-turbo-16k-0613", -# ) - -# schema = { -# "properties": { -# "Main character": {"type": "string"}, -# "Summary": {"type": "string"}, -# }, -# "required": [ -# "Main character", -# "Cummary", -# ], -# } -# chain = create_extraction_chain(schema, llm) - -# chain.run(main_character, callbacks=[handler]) - -# handler.flush() - -# - -# trace = get_api().trace.get(handler.get_trace_id()) - -# generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) -# assert len(generations) > 0 - -# for generation in generations: -# assert generation.input is not None -# assert generation.output is not None -# assert generation.input != "" -# assert generation.output != "" -# assert generation.usage_details["total"] is not None -# assert generation.usage_details["input"] is not None -# assert generation.usage_details["output"] is not None - - -@pytest.mark.skip(reason="inference cost") -def test_aws_bedrock_chain(): - import os - - import boto3 - from langchain.llms.bedrock import Bedrock - - api_wrapper = LangfuseAPI() - handler = CallbackHandler(debug=False) - - bedrock_client = boto3.client( - "bedrock-runtime", - region_name="us-east-1", - aws_access_key_id=os.environ.get("AWS_ACCESS_KEY_ID"), - aws_secret_access_key=os.environ.get("AWS_SECRET_ACCESS_KEY"), - aws_session_token=os.environ.get("AWS_SESSION_TOKEN"), - ) - - llm = Bedrock( - model_id="anthropic.claude-instant-v1", - client=bedrock_client, - model_kwargs={ - "max_tokens_to_sample": 1000, - "temperature": 0.0, - }, - ) - - text = "What would be a good company name for a company that makes colorful socks?" - - llm.predict(text, callbacks=[handler]) - - handler.flush() - - trace_id = handler.get_trace_id() - - trace = api_wrapper.get_trace(trace_id) - - generation = trace["observations"][1] - - assert generation["promptTokens"] is not None - assert generation["completionTokens"] is not None - assert generation["totalTokens"] is not None - - assert len(trace["observations"]) == 2 - for observation in trace["observations"]: - if observation["type"] == "GENERATION": - assert observation["promptTokens"] > 0 - assert observation["completionTokens"] > 0 - assert observation["totalTokens"] > 0 - assert observation["input"] is not None - assert observation["input"] != "" - assert observation["output"] is not None - assert observation["output"] != "" - assert observation["name"] == "Bedrock" - assert observation["model"] == "claude" - - -def test_unimplemented_model(): - callback = CallbackHandler(debug=False) - - class CustomLLM(LLM): - n: int - - @property - def _llm_type(self) -> str: - return "custom" - - def _call( - self, - prompt: str, - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> str: - if stop is not None: - raise ValueError("stop kwargs are not permitted.") - return "This is a great text, which i can take characters from "[: self.n] - - @property - def _identifying_params(self) -> Mapping[str, Any]: - """Get the identifying parameters.""" - return {"n": self.n} - - custom_llm = CustomLLM(n=10) - - llm = OpenAI(openai_api_key=os.environ.get("OPENAI_API_KEY")) - template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. - Title: {title} - Playwright: This is a synopsis for the above play:""" - - prompt_template = PromptTemplate(input_variables=["title"], template=template) - synopsis_chain = LLMChain(llm=llm, prompt=prompt_template) - - template = """You are a play critic from the New York Times. - Given the synopsis of play, it is your job to write a review for that play. - - Play Synopsis: - {synopsis} - Review from a New York Times play critic of the above play:""" - prompt_template = PromptTemplate(input_variables=["synopsis"], template=template) - custom_llm_chain = LLMChain(llm=custom_llm, prompt=prompt_template) - - sequential_chain = SimpleSequentialChain(chains=[custom_llm_chain, synopsis_chain]) - sequential_chain.run("This is a foobar thing", callbacks=[callback]) - - callback.flush() - - trace = get_api().trace.get(callback.get_trace_id()) - - assert len(trace.observations) == 5 - - custom_generation = list( - filter( - lambda x: x.type == "GENERATION" and x.name == "CustomLLM", - trace.observations, - ) - )[0] - - assert custom_generation.output == "This is a" - assert custom_generation.model is None - - -def test_names_on_spans_lcel(): - from langchain_core.output_parsers import StrOutputParser - from langchain_core.runnables import RunnablePassthrough - from langchain_openai import OpenAIEmbeddings - - callback = CallbackHandler(debug=False) - model = ChatOpenAI(temperature=0) - - template = """Answer the question based only on the following context: - {context} - - Question: {question} - """ - prompt = ChatPromptTemplate.from_template(template) - - loader = TextLoader("./static/state_of_the_union.txt", encoding="utf8") - - documents = loader.load() - text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) - texts = text_splitter.split_documents(documents) - - embeddings = OpenAIEmbeddings(openai_api_key=os.environ.get("OPENAI_API_KEY")) - docsearch = Chroma.from_documents(texts, embeddings) - - retriever = docsearch.as_retriever() - - retrieval_chain = ( - { - "context": retriever.with_config(run_name="Docs"), - "question": RunnablePassthrough(), - } - | prompt - | model.with_config(run_name="my_llm") - | StrOutputParser() - ) - - retrieval_chain.invoke( - "What did the president say about Ketanji Brown Jackson?", - config={ - "callbacks": [callback], - }, - ) - - callback.flush() - - trace = get_api().trace.get(callback.get_trace_id()) - - assert len(trace.observations) == 7 - - assert ( - len( - list( - filter( - lambda x: x.type == "GENERATION" and x.name == "my_llm", - trace.observations, - ) - ) - ) - == 1 - ) - - assert ( - len( - list( - filter( - lambda x: x.type == "SPAN" and x.name == "Docs", - trace.observations, - ) - ) - ) - == 1 - ) - - -def test_openai_instruct_usage(): - from langchain_core.output_parsers.string import StrOutputParser - from langchain_core.runnables import Runnable - from langchain_openai import OpenAI - - lf_handler = CallbackHandler(debug=True) - - runnable_chain: Runnable = ( - PromptTemplate.from_template( - """Answer the question based only on the following context: - - Question: {question} - - Answer in the following language: {language} - """ - ) - | OpenAI( - model="gpt-3.5-turbo-instruct", - temperature=0, - callbacks=[lf_handler], - max_retries=3, - timeout=30, - ) - | StrOutputParser() - ) - input_list = [ - {"question": "where did harrison work", "language": "english"}, - {"question": "how is your day", "language": "english"}, - ] - runnable_chain.batch(input_list) - - lf_handler.flush() - - observations = get_api().trace.get(lf_handler.get_trace_id()).observations - - assert len(observations) == 2 - - for observation in observations: - assert observation.type == "GENERATION" - assert observation.output is not None - assert observation.output != "" - assert observation.input is not None - assert observation.input != "" - assert observation.usage is not None - assert observation.usage_details["input"] is not None - assert observation.usage_details["output"] is not None - assert observation.usage_details["total"] is not None - - -def test_get_langchain_prompt_with_jinja2(): - langfuse = Langfuse() - - prompt = 'this is a {{ template }} template that should remain unchanged: {{ handle_text(payload["Name"], "Name is") }}' - langfuse.create_prompt( - name="test_jinja2", - prompt=prompt, - labels=["production"], - ) - - langfuse_prompt = langfuse.get_prompt( - "test_jinja2", fetch_timeout_seconds=1, max_retries=3 - ) - - assert ( - langfuse_prompt.get_langchain_prompt() - == 'this is a {template} template that should remain unchanged: {{ handle_text(payload["Name"], "Name is") }}' - ) - - -def test_get_langchain_prompt(): - langfuse = Langfuse() - - test_prompts = ["This is a {{test}}", "This is a {{test}}. And this is a {{test2}}"] - - for i, test_prompt in enumerate(test_prompts): - langfuse.create_prompt( - name=f"test_{i}", - prompt=test_prompt, - config={ - "model": "gpt-3.5-turbo-1106", - "temperature": 0, - }, - labels=["production"], - ) - - langfuse_prompt = langfuse.get_prompt(f"test_{i}") - - langchain_prompt = ChatPromptTemplate.from_template( - langfuse_prompt.get_langchain_prompt() - ) - - if i == 0: - assert langchain_prompt.format(test="test") == "Human: This is a test" - else: - assert ( - langchain_prompt.format(test="test", test2="test2") - == "Human: This is a test. And this is a test2" - ) - - -def test_get_langchain_chat_prompt(): - langfuse = Langfuse() - - test_prompts = [ - [{"role": "system", "content": "This is a {{test}} with a {{test}}"}], - [ - {"role": "system", "content": "This is a {{test}}."}, - {"role": "user", "content": "And this is a {{test2}}"}, - ], - ] - - for i, test_prompt in enumerate(test_prompts): - langfuse.create_prompt( - name=f"test_chat_{i}", - prompt=test_prompt, - type="chat", - config={ - "model": "gpt-3.5-turbo-1106", - "temperature": 0, - }, - labels=["production"], - ) - - langfuse_prompt = langfuse.get_prompt(f"test_chat_{i}", type="chat") - langchain_prompt = ChatPromptTemplate.from_messages( - langfuse_prompt.get_langchain_prompt() - ) - - if i == 0: - assert ( - langchain_prompt.format(test="test") - == "System: This is a test with a test" - ) - else: - assert ( - langchain_prompt.format(test="test", test2="test2") - == "System: This is a test.\nHuman: And this is a test2" - ) - - -def test_disabled_langfuse(): - run_name_override = "This is a custom Run Name" - handler = CallbackHandler(enabled=False, debug=False) - - prompt = ChatPromptTemplate.from_template("tell me a short joke about {topic}") - model = ChatOpenAI(temperature=0) - - chain = prompt | model - - chain.invoke( - {"topic": "ice cream"}, - config={ - "callbacks": [handler], - "run_name": run_name_override, - }, - ) - - assert handler.langfuse.task_manager._ingestion_queue.empty() - - handler.flush() - - trace_id = handler.get_trace_id() - - with pytest.raises(Exception): - get_api().trace.get(trace_id) - - -def test_link_langfuse_prompts_invoke(): - langfuse = Langfuse() - trace_name = "test_link_langfuse_prompts_invoke" - session_id = "session_" + create_uuid()[:8] - user_id = "user_" + create_uuid()[:8] - - # Create prompts - joke_prompt_name = "joke_prompt_" + create_uuid()[:8] - joke_prompt_string = "Tell me a joke involving the animal {{animal}}" - - explain_prompt_name = "explain_prompt_" + create_uuid()[:8] - explain_prompt_string = "Explain the joke to me like I'm a 5 year old {{joke}}" - - langfuse.create_prompt( - name=joke_prompt_name, - prompt=joke_prompt_string, - labels=["production"], - ) - - langfuse.create_prompt( - name=explain_prompt_name, - prompt=explain_prompt_string, - labels=["production"], - ) - - # Get prompts - langfuse_joke_prompt = langfuse.get_prompt(joke_prompt_name) - langfuse_explain_prompt = langfuse.get_prompt(explain_prompt_name) - - langchain_joke_prompt = PromptTemplate.from_template( - langfuse_joke_prompt.get_langchain_prompt(), - metadata={"langfuse_prompt": langfuse_joke_prompt}, - ) - - langchain_explain_prompt = PromptTemplate.from_template( - langfuse_explain_prompt.get_langchain_prompt(), - metadata={"langfuse_prompt": langfuse_explain_prompt}, - ) - - # Create chain - parser = StrOutputParser() - model = OpenAI() - chain = ( - {"joke": langchain_joke_prompt | model | parser} - | langchain_explain_prompt - | model - | parser - ) - - # Run chain - langfuse_handler = CallbackHandler(debug=True) - - output = chain.invoke( - {"animal": "dog"}, - config={ - "callbacks": [langfuse_handler], - "run_name": trace_name, - "tags": ["langchain-tag"], - "metadata": { - "langfuse_session_id": session_id, - "langfuse_user_id": user_id, - }, - }, - ) - - langfuse_handler.flush() - sleep(2) - - trace = get_api().trace.get(langfuse_handler.get_trace_id()) - - assert trace.tags == ["langchain-tag"] - assert trace.session_id == session_id - assert trace.user_id == user_id - - observations = trace.observations - - generations = sorted( - list(filter(lambda x: x.type == "GENERATION", observations)), - key=lambda x: x.start_time, - ) - - assert len(generations) == 2 - assert generations[0].input == "Tell me a joke involving the animal dog" - assert "Explain the joke to me like I'm a 5 year old" in generations[1].input - - assert generations[0].prompt_name == joke_prompt_name - assert generations[1].prompt_name == explain_prompt_name - - assert generations[0].prompt_version == langfuse_joke_prompt.version - assert generations[1].prompt_version == langfuse_explain_prompt.version - - assert generations[1].output == (output.strip() if output else None) - - -def test_link_langfuse_prompts_stream(): - langfuse = Langfuse(debug=True) - trace_name = "test_link_langfuse_prompts_stream" - session_id = "session_" + create_uuid()[:8] - user_id = "user_" + create_uuid()[:8] - - # Create prompts - joke_prompt_name = "joke_prompt_" + create_uuid()[:8] - joke_prompt_string = "Tell me a joke involving the animal {{animal}}" - - explain_prompt_name = "explain_prompt_" + create_uuid()[:8] - explain_prompt_string = "Explain the joke to me like I'm a 5 year old {{joke}}" - - langfuse.create_prompt( - name=joke_prompt_name, - prompt=joke_prompt_string, - labels=["production"], - ) - - langfuse.create_prompt( - name=explain_prompt_name, - prompt=explain_prompt_string, - labels=["production"], - ) - - # Get prompts - langfuse_joke_prompt = langfuse.get_prompt(joke_prompt_name) - langfuse_explain_prompt = langfuse.get_prompt(explain_prompt_name) - - langchain_joke_prompt = PromptTemplate.from_template( - langfuse_joke_prompt.get_langchain_prompt(), - metadata={"langfuse_prompt": langfuse_joke_prompt}, - ) - - langchain_explain_prompt = PromptTemplate.from_template( - langfuse_explain_prompt.get_langchain_prompt(), - metadata={"langfuse_prompt": langfuse_explain_prompt}, - ) - - # Create chain - parser = StrOutputParser() - model = OpenAI() - chain = ( - {"joke": langchain_joke_prompt | model | parser} - | langchain_explain_prompt - | model - | parser - ) - - # Run chain - langfuse_handler = CallbackHandler() - - stream = chain.stream( - {"animal": "dog"}, - config={ - "callbacks": [langfuse_handler], - "run_name": trace_name, - "tags": ["langchain-tag"], - "metadata": { - "langfuse_session_id": session_id, - "langfuse_user_id": user_id, - }, - }, - ) - - output = "" - for chunk in stream: - output += chunk - - langfuse_handler.flush() - sleep(2) - - trace = get_api().trace.get(langfuse_handler.get_trace_id()) - - assert trace.tags == ["langchain-tag"] - assert trace.session_id == session_id - assert trace.user_id == user_id - - observations = trace.observations - - generations = sorted( - list(filter(lambda x: x.type == "GENERATION", observations)), - key=lambda x: x.start_time, - ) - - assert len(generations) == 2 - assert generations[0].input == "Tell me a joke involving the animal dog" - assert "Explain the joke to me like I'm a 5 year old" in generations[1].input - - assert generations[0].prompt_name == joke_prompt_name - assert generations[1].prompt_name == explain_prompt_name - - assert generations[0].prompt_version == langfuse_joke_prompt.version - assert generations[1].prompt_version == langfuse_explain_prompt.version - - assert generations[0].time_to_first_token is not None - assert generations[1].time_to_first_token is not None - - assert generations[1].output == (output.strip() if output else None) - - -def test_link_langfuse_prompts_batch(): - langfuse = Langfuse() - trace_name = "test_link_langfuse_prompts_batch_" + create_uuid()[:8] - - # Create prompts - joke_prompt_name = "joke_prompt_" + create_uuid()[:8] - joke_prompt_string = "Tell me a joke involving the animal {{animal}}" - - explain_prompt_name = "explain_prompt_" + create_uuid()[:8] - explain_prompt_string = "Explain the joke to me like I'm a 5 year old {{joke}}" - - langfuse.create_prompt( - name=joke_prompt_name, - prompt=joke_prompt_string, - labels=["production"], - ) - - langfuse.create_prompt( - name=explain_prompt_name, - prompt=explain_prompt_string, - labels=["production"], - ) - - # Get prompts - langfuse_joke_prompt = langfuse.get_prompt(joke_prompt_name) - langfuse_explain_prompt = langfuse.get_prompt(explain_prompt_name) - - langchain_joke_prompt = PromptTemplate.from_template( - langfuse_joke_prompt.get_langchain_prompt(), - metadata={"langfuse_prompt": langfuse_joke_prompt}, - ) - - langchain_explain_prompt = PromptTemplate.from_template( - langfuse_explain_prompt.get_langchain_prompt(), - metadata={"langfuse_prompt": langfuse_explain_prompt}, - ) - - # Create chain - parser = StrOutputParser() - model = OpenAI() - chain = ( - {"joke": langchain_joke_prompt | model | parser} - | langchain_explain_prompt - | model - | parser - ) - - # Run chain - langfuse_handler = CallbackHandler(debug=True) - - chain.batch( - [{"animal": "dog"}, {"animal": "cat"}, {"animal": "elephant"}], - config={ - "callbacks": [langfuse_handler], - "run_name": trace_name, - "tags": ["langchain-tag"], - }, - ) - - langfuse_handler.flush() - - traces = get_api().trace.list(name=trace_name).data - - assert len(traces) == 3 - - for trace in traces: - trace = get_api().trace.get(trace.id) - - assert trace.tags == ["langchain-tag"] - - observations = trace.observations - - generations = sorted( - list(filter(lambda x: x.type == "GENERATION", observations)), - key=lambda x: x.start_time, - ) - - assert len(generations) == 2 - - assert generations[0].prompt_name == joke_prompt_name - assert generations[1].prompt_name == explain_prompt_name - - assert generations[0].prompt_version == langfuse_joke_prompt.version - assert generations[1].prompt_version == langfuse_explain_prompt.version - - -def test_get_langchain_text_prompt_with_precompiled_prompt(): - langfuse = Langfuse() - - prompt_name = "test_precompiled_langchain_prompt" - test_prompt = ( - "This is a {{pre_compiled_var}}. This is a langchain {{langchain_var}}" - ) - - langfuse.create_prompt( - name=prompt_name, - prompt=test_prompt, - labels=["production"], - ) - - langfuse_prompt = langfuse.get_prompt(prompt_name) - langchain_prompt = PromptTemplate.from_template( - langfuse_prompt.get_langchain_prompt(pre_compiled_var="dog") - ) - - assert ( - langchain_prompt.format(langchain_var="chain") - == "This is a dog. This is a langchain chain" - ) - - -def test_get_langchain_chat_prompt_with_precompiled_prompt(): - langfuse = Langfuse() - - prompt_name = "test_precompiled_langchain_chat_prompt" - test_prompt = [ - {"role": "system", "content": "This is a {{pre_compiled_var}}."}, - {"role": "user", "content": "This is a langchain {{langchain_var}}."}, - ] - - langfuse.create_prompt( - name=prompt_name, - prompt=test_prompt, - type="chat", - labels=["production"], - ) - - langfuse_prompt = langfuse.get_prompt(prompt_name, type="chat") - langchain_prompt = ChatPromptTemplate.from_messages( - langfuse_prompt.get_langchain_prompt(pre_compiled_var="dog") - ) - - system_message, user_message = langchain_prompt.format_messages( - langchain_var="chain" - ) - - assert system_message.content == "This is a dog." - assert user_message.content == "This is a langchain chain." - - -def test_callback_openai_functions_with_tools(): - handler = CallbackHandler() - - llm = ChatOpenAI(model="gpt-4", temperature=0, callbacks=[handler]) - - class StandardizedAddress(BaseModel): - street: str = Field(description="The street name and number") - city: str = Field(description="The city name") - state: str = Field(description="The state or province") - zip_code: str = Field(description="The postal code") - - class GetWeather(BaseModel): - city: str = Field(description="The city name") - state: str = Field(description="The state or province") - zip_code: str = Field(description="The postal code") - - address_tool = StructuredTool.from_function( - func=lambda **kwargs: StandardizedAddress(**kwargs), - name="standardize_address", - description="Standardize the given address", - args_schema=StandardizedAddress, - ) - - weather_tool = StructuredTool.from_function( - func=lambda **kwargs: GetWeather(**kwargs), - name="get_weather", - description="Get the weather for the given city", - args_schema=GetWeather, - ) - - messages = [ - { - "role": "user", - "content": "Please standardize this address: 123 Main St, Springfield, IL 62701", - } - ] - - llm.bind_tools([address_tool, weather_tool]).invoke(messages) - - handler.flush() - - trace = get_api().trace.get(handler.get_trace_id()) - - generations = list(filter(lambda x: x.type == "GENERATION", trace.observations)) - assert len(generations) > 0 - - for generation in generations: - assert generation.input is not None - tool_messages = [msg for msg in generation.input if msg["role"] == "tool"] - assert len(tool_messages) == 2 - assert any( - "standardize_address" == msg["content"]["function"]["name"] - for msg in tool_messages - ) - assert any( - "get_weather" == msg["content"]["function"]["name"] for msg in tool_messages - ) - - assert generation.output is not None - - -def test_langfuse_overhead(): - def _generate_random_dict(n: int, key_length: int = 8) -> Dict[str, Any]: - result = {} - value_generators = [ - lambda: "".join( - random.choices(string.ascii_letters, k=random.randint(3, 15)) - ), - lambda: random.randint(0, 1000), - lambda: round(random.uniform(0, 100), 2), - lambda: [random.randint(0, 100) for _ in range(random.randint(1, 5))], - lambda: random.choice([True, False]), - ] - while len(result) < n: - key = "".join( - random.choices(string.ascii_letters + string.digits, k=key_length) - ) - if key in result: - continue - value = random.choice(value_generators)() - result[key] = value - return result - - # Test performance overhead of langfuse tracing - inputs = _generate_random_dict(10000, 20000) - test_chain = RunnableLambda(lambda x: None) - - start = time.monotonic() - test_chain.invoke(inputs) - duration_without_langfuse = (time.monotonic() - start) * 1000 - - start = time.monotonic() - handler = CallbackHandler() - test_chain.invoke(inputs, config={"callbacks": [handler]}) - duration_with_langfuse = (time.monotonic() - start) * 1000 - - overhead = duration_with_langfuse - duration_without_langfuse - print(f"Langfuse overhead: {overhead}ms") - - assert ( - overhead < 100 - ), f"Langfuse tracing overhead of {overhead}ms exceeds threshold" - - handler.flush() - - duration_full = (time.monotonic() - start) * 1000 - print(f"Full execution took {duration_full}ms") - - assert duration_full > 1000, "Full execution should take longer than 1 second" - - -def test_multimodal(): - handler = CallbackHandler() - model = ChatOpenAI(model="gpt-4o-mini") - - image_data = encode_file_to_base64("static/puton.jpg") - - message = HumanMessage( - content=[ - {"type": "text", "text": "What's in this image?"}, - { - "type": "image_url", - "image_url": {"url": f"data:image/jpeg;base64,{image_data}"}, - }, - ], - ) - - response = model.invoke([message], config={"callbacks": [handler]}) - - print(response.content) - - handler.flush() - - trace = get_api().trace.get(handler.get_trace_id()) - - assert len(trace.observations) == 1 - assert trace.observations[0].type == "GENERATION" - - print(trace.observations[0].input) - - assert ( - "@@@langfuseMedia:type=image/jpeg|id=" - in trace.observations[0].input[0]["content"][1]["image_url"]["url"] - ) - - -def test_langgraph(): - # Define the tools for the agent to use - @tool - def search(query: str): - """Call to surf the web.""" - # This is a placeholder, but don't tell the LLM that... - if "sf" in query.lower() or "san francisco" in query.lower(): - return "It's 60 degrees and foggy." - return "It's 90 degrees and sunny." - - tools = [search] - tool_node = ToolNode(tools) - model = ChatOpenAI(model="gpt-4o-mini").bind_tools(tools) - - # Define the function that determines whether to continue or not - def should_continue(state: MessagesState) -> Literal["tools", END]: - messages = state["messages"] - last_message = messages[-1] - # If the LLM makes a tool call, then we route to the "tools" node - if last_message.tool_calls: - return "tools" - # Otherwise, we stop (reply to the user) - return END - - # Define the function that calls the model - def call_model(state: MessagesState): - messages = state["messages"] - response = model.invoke(messages) - # We return a list, because this will get added to the existing list - return {"messages": [response]} - - # Define a new graph - workflow = StateGraph(MessagesState) - - # Define the two nodes we will cycle between - workflow.add_node("agent", call_model) - workflow.add_node("tools", tool_node) - - # Set the entrypoint as `agent` - # This means that this node is the first one called - workflow.add_edge(START, "agent") - - # We now add a conditional edge - workflow.add_conditional_edges( - # First, we define the start node. We use `agent`. - # This means these are the edges taken after the `agent` node is called. - "agent", - # Next, we pass in the function that will determine which node is called next. - should_continue, - ) - - # We now add a normal edge from `tools` to `agent`. - # This means that after `tools` is called, `agent` node is called next. - workflow.add_edge("tools", "agent") - - # Initialize memory to persist state between graph runs - checkpointer = MemorySaver() - - # Finally, we compile it! - # This compiles it into a LangChain Runnable, - # meaning you can use it as you would any other runnable. - # Note that we're (optionally) passing the memory when compiling the graph - app = workflow.compile(checkpointer=checkpointer) - - handler = CallbackHandler() - - # Use the Runnable - final_state = app.invoke( - {"messages": [HumanMessage(content="what is the weather in sf")]}, - config={"configurable": {"thread_id": 42}, "callbacks": [handler]}, - ) - print(final_state["messages"][-1].content) - handler.flush() - - trace = get_api().trace.get(handler.get_trace_id()) - - hidden_count = 0 - - for observation in trace.observations: - if LANGSMITH_TAG_HIDDEN in observation.metadata.get("tags", []): - hidden_count += 1 - assert observation.level == "DEBUG" - - else: - assert observation.level == "DEFAULT" - - assert hidden_count > 0 - - -def test_cached_token_usage(): - prompt = ChatPromptTemplate.from_messages( - [ - ( - "system", - ( - "This is a test prompt to reproduce the issue. " - "The prompt needs 1024 tokens to enable cache." * 100 - ), - ), - ("user", "Reply to this message {test_param}."), - ] - ) - chat = ChatOpenAI(model="gpt-4o-mini") - chain = prompt | chat - handler = CallbackHandler() - config = {"callbacks": [handler]} - - chain.invoke({"test_param": "in a funny way"}, config) - chain.invoke({"test_param": "in a funny way"}, config) - sleep(1) - - # invoke again to force cached token usage - chain.invoke({"test_param": "in a funny way"}, config) - - handler.flush() - - trace = get_api().trace.get(handler.get_trace_id()) - - generation = next((o for o in trace.observations if o.type == "GENERATION")) - - assert generation.usage_details["input_cache_read"] > 0 - assert ( - generation.usage_details["input"] - + generation.usage_details["input_cache_read"] - + generation.usage_details["output"] - == generation.usage_details["total"] - ) - - assert generation.cost_details["input_cache_read"] > 0 - assert ( - abs( - generation.cost_details["input"] - + generation.cost_details["input_cache_read"] - + generation.cost_details["output"] - - generation.cost_details["total"] - ) - < 0.0001 - ) diff --git a/tests/test_langchain_integration.py b/tests/test_langchain_integration.py deleted file mode 100644 index f3d7b6980..000000000 --- a/tests/test_langchain_integration.py +++ /dev/null @@ -1,822 +0,0 @@ -from langchain_openai import ChatOpenAI, OpenAI -from langchain.prompts import ChatPromptTemplate, PromptTemplate -from langchain.schema import StrOutputParser -import pytest -import types -from langfuse.callback import CallbackHandler -from tests.utils import get_api -from .utils import create_uuid - - -# to avoid the instanciation of langfuse in side langfuse.openai. -def _is_streaming_response(response): - return isinstance(response, types.GeneratorType) or isinstance( - response, types.AsyncGeneratorType - ) - - -# Streaming in chat models -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo", "gpt-4"]) -def test_stream_chat_models(model_name): - name = f"test_stream_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI( - streaming=True, max_completion_tokens=300, tags=tags, model=model_name - ) - callback = CallbackHandler(trace_name=name) - res = model.stream( - [{"role": "user", "content": "return the exact phrase - This is a test!"}], - config={"callbacks": [callback]}, - ) - response_str = [] - assert _is_streaming_response(res) - for chunk in res: - response_str.append(chunk.content) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(response_str) > 1 # To check there are more than one chunk. - assert len(trace.observations) == 1 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.output["content"] is not None - assert generation.output["role"] is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Streaming in completions models -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -def test_stream_completions_models(model_name): - name = f"test_stream_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(streaming=True, max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - res = model.stream( - "return the exact phrase - This is a test!", - config={"callbacks": [callback]}, - ) - response_str = [] - assert _is_streaming_response(res) - for chunk in res: - response_str.append(chunk) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(response_str) > 1 # To check there are more than one chunk. - assert len(trace.observations) == 1 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.output is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Invoke in chat models -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo", "gpt-4"]) -def test_invoke_chat_models(model_name): - name = f"test_invoke_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI(max_completion_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - _ = model.invoke( - [{"role": "user", "content": "return the exact phrase - This is a test!"}], - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(trace.observations) == 1 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.output["content"] is not None - assert generation.output["role"] is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Invoke in completions models -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -def test_invoke_in_completions_models(model_name): - name = f"test_invoke_in_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - test_phrase = "This is a test!" - _ = model.invoke( - f"return the exact phrase - {test_phrase}", - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(trace.observations) == 1 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert test_phrase in generation.output - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -def test_batch_in_completions_models(model_name): - name = f"test_batch_in_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - input1 = "Who is the first president of America ?" - input2 = "Who is the first president of Ireland ?" - _ = model.batch( - [input1, input2], - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(trace.observations) == 1 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo", "gpt-4"]) -def test_batch_in_chat_models(model_name): - name = f"test_batch_in_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI(max_completion_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - input1 = "Who is the first president of America ?" - input2 = "Who is the first president of Ireland ?" - _ = model.batch( - [input1, input2], - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - assert len(trace.observations) == 1 - assert trace.name == name - for generation in generationList: - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async stream in chat models -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo", "gpt-4"]) -async def test_astream_chat_models(model_name): - name = f"test_astream_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI( - streaming=True, max_completion_tokens=300, tags=tags, model=model_name - ) - callback = CallbackHandler(trace_name=name) - res = model.astream( - [{"role": "user", "content": "Who was the first American president "}], - config={"callbacks": [callback]}, - ) - response_str = [] - assert _is_streaming_response(res) - async for chunk in res: - response_str.append(chunk.content) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(response_str) > 1 # To check there are more than one chunk. - assert len(trace.observations) == 1 - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.output["content"] is not None - assert generation.output["role"] is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async stream in completions model -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -async def test_astream_completions_models(model_name): - name = f"test_astream_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(streaming=True, max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - test_phrase = "This is a test!" - res = model.astream( - f"return the exact phrase - {test_phrase}", - config={"callbacks": [callback]}, - ) - response_str = [] - assert _is_streaming_response(res) - async for chunk in res: - response_str.append(chunk) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(response_str) > 1 # To check there are more than one chunk. - assert len(trace.observations) == 1 - assert test_phrase in "".join(response_str) - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert test_phrase in generation.output - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async invoke in chat models -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo", "gpt-4"]) -async def test_ainvoke_chat_models(model_name): - name = f"test_ainvoke_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI(max_completion_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - test_phrase = "This is a test!" - _ = await model.ainvoke( - [{"role": "user", "content": f"return the exact phrase - {test_phrase} "}], - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(trace.observations) == 1 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.output["content"] is not None - assert generation.output["role"] is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -async def test_ainvoke_in_completions_models(model_name): - name = f"test_ainvoke_in_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - test_phrase = "This is a test!" - _ = await model.ainvoke( - f"return the exact phrase - {test_phrase}", - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert len(trace.observations) == 1 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert generation.metadata["tags"] == tags - assert generation.usage.output is not None - assert generation.usage.total is not None - assert test_phrase in generation.output - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Chains - - -# Sync batch in chains and chat models -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo", "gpt-4"]) -def test_chains_batch_in_chat_models(model_name): - name = f"test_chains_batch_in_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI(max_completion_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - - prompt = ChatPromptTemplate.from_template("tell me a joke about {foo} in 300 words") - inputs = [{"foo": "bears"}, {"foo": "cats"}] - chain = prompt | model | StrOutputParser() - _ = chain.batch( - inputs, - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - assert len(trace.observations) == 4 - for generation in generationList: - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert all(x in generation.metadata["tags"] for x in tags) - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -def test_chains_batch_in_completions_models(model_name): - name = f"test_chains_batch_in_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - - prompt = ChatPromptTemplate.from_template("tell me a joke about {foo} in 300 words") - inputs = [{"foo": "bears"}, {"foo": "cats"}] - chain = prompt | model | StrOutputParser() - _ = chain.batch( - inputs, - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - assert len(trace.observations) == 4 - for generation in generationList: - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert all(x in generation.metadata["tags"] for x in tags) - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async batch call with chains and chat models -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo", "gpt-4"]) -async def test_chains_abatch_in_chat_models(model_name): - name = f"test_chains_abatch_in_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI(max_completion_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - - prompt = ChatPromptTemplate.from_template("tell me a joke about {foo} in 300 words") - inputs = [{"foo": "bears"}, {"foo": "cats"}] - chain = prompt | model | StrOutputParser() - _ = await chain.abatch( - inputs, - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - assert len(trace.observations) == 4 - for generation in generationList: - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert all(x in generation.metadata["tags"] for x in tags) - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async batch call with chains and completions models -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -async def test_chains_abatch_in_completions_models(model_name): - name = f"test_chains_abatch_in_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - - prompt = ChatPromptTemplate.from_template("tell me a joke about {foo} in 300 words") - inputs = [{"foo": "bears"}, {"foo": "cats"}] - chain = prompt | model | StrOutputParser() - _ = await chain.abatch(inputs, config={"callbacks": [callback]}) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - assert len(trace.observations) == 4 - for generation in generationList: - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert all(x in generation.metadata["tags"] for x in tags) - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async invoke in chains and chat models -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo"]) -async def test_chains_ainvoke_chat_models(model_name): - name = f"test_chains_ainvoke_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI(max_completion_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - prompt1 = ChatPromptTemplate.from_template( - """You are a skilled writer tasked with crafting an engaging introduction for a blog post on the following topic: - Topic: {topic} - Introduction: This is an engaging introduction for the blog post on the topic above:""" - ) - chain = prompt1 | model | StrOutputParser() - res = await chain.ainvoke( - {"topic": "The Impact of Climate Change"}, - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - assert len(trace.observations) == 4 - assert trace.name == name - assert trace.input == {"topic": "The Impact of Climate Change"} - assert trace.output == res - for generation in generationList: - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert all(x in generation.metadata["tags"] for x in tags) - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.output["content"] is not None - assert generation.output["role"] is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async invoke in chains and completions models -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -async def test_chains_ainvoke_completions_models(model_name): - name = f"test_chains_ainvoke_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - prompt1 = PromptTemplate.from_template( - """You are a skilled writer tasked with crafting an engaging introduction for a blog post on the following topic: - Topic: {topic} - Introduction: This is an engaging introduction for the blog post on the topic above:""" - ) - chain = prompt1 | model | StrOutputParser() - res = await chain.ainvoke( - {"topic": "The Impact of Climate Change"}, - config={"callbacks": [callback]}, - ) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - assert trace.input == {"topic": "The Impact of Climate Change"} - assert trace.output == res - assert len(trace.observations) == 4 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert all(x in generation.metadata["tags"] for x in tags) - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async streaming in chat models -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo", "gpt-4"]) -async def test_chains_astream_chat_models(model_name): - name = f"test_chains_astream_chat_models-{create_uuid()}" - tags = ["Hello", "world"] - model = ChatOpenAI( - streaming=True, max_completion_tokens=300, tags=tags, model=model_name - ) - callback = CallbackHandler(trace_name=name) - prompt1 = PromptTemplate.from_template( - """You are a skilled writer tasked with crafting an engaging introduction for a blog post on the following topic: - Topic: {topic} - Introduction: This is an engaging introduction for the blog post on the topic above:""" - ) - chain = prompt1 | model | StrOutputParser() - res = chain.astream( - {"topic": "The Impact of Climate Change"}, - config={"callbacks": [callback]}, - ) - response_str = [] - assert _is_streaming_response(res) - async for chunk in res: - response_str.append(chunk) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert trace.input == {"topic": "The Impact of Climate Change"} - assert trace.output == "".join(response_str) - assert len(response_str) > 1 # To check there are more than one chunk. - assert len(trace.observations) == 4 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_completion_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert all(x in generation.metadata["tags"] for x in tags) - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.output["content"] is not None - assert generation.output["role"] is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None - - -# Async Streaming in completions models -@pytest.mark.asyncio -@pytest.mark.parametrize("model_name", ["gpt-3.5-turbo-instruct"]) -async def test_chains_astream_completions_models(model_name): - name = f"test_chains_astream_completions_models-{create_uuid()}" - tags = ["Hello", "world"] - model = OpenAI(streaming=True, max_tokens=300, tags=tags, model=model_name) - callback = CallbackHandler(trace_name=name) - prompt1 = PromptTemplate.from_template( - """You are a skilled writer tasked with crafting an engaging introduction for a blog post on the following topic: - Topic: {topic} - Introduction: This is an engaging introduction for the blog post on the topic above:""" - ) - chain = prompt1 | model | StrOutputParser() - res = chain.astream( - {"topic": "The Impact of Climate Change"}, - config={"callbacks": [callback]}, - ) - response_str = [] - assert _is_streaming_response(res) - async for chunk in res: - response_str.append(chunk) - - callback.flush() - assert callback.runs == {} - api = get_api() - trace = api.trace.get(callback.get_trace_id()) - generationList = list(filter(lambda o: o.type == "GENERATION", trace.observations)) - assert len(generationList) != 0 - - generation = generationList[0] - - assert trace.input == {"topic": "The Impact of Climate Change"} - assert trace.output == "".join(response_str) - assert len(response_str) > 1 # To check there are more than one chunk. - assert len(trace.observations) == 4 - assert trace.name == name - assert model_name in generation.model - assert generation.input is not None - assert generation.output is not None - assert generation.model_parameters.get("max_tokens") is not None - assert generation.model_parameters.get("temperature") is not None - assert all(x in generation.metadata["tags"] for x in tags) - assert generation.usage.output is not None - assert generation.usage.total is not None - assert generation.input_price is not None - assert generation.output_price is not None - assert generation.calculated_input_cost is not None - assert generation.calculated_output_cost is not None - assert generation.calculated_total_cost is not None - assert generation.latency is not None diff --git a/tests/test_llama_index.py b/tests/test_llama_index.py deleted file mode 100644 index f3ccadc37..000000000 --- a/tests/test_llama_index.py +++ /dev/null @@ -1,544 +0,0 @@ -import pytest -from llama_index.core import PromptTemplate, Settings -from llama_index.core.callbacks import CallbackManager -from llama_index.core.query_pipeline import QueryPipeline -from llama_index.llms.anthropic import Anthropic -from llama_index.llms.openai import OpenAI - -from langfuse.client import Langfuse -from langfuse.llama_index import LlamaIndexCallbackHandler -from tests.utils import create_uuid, get_api, get_llama_index_index - - -def validate_embedding_generation(generation): - return all( - [ - generation.name == "OpenAIEmbedding", - generation.usage.input == 0, - generation.usage.output == 0, - generation.usage.total > 0, # For embeddings, only total tokens are logged - bool(generation.input), - bool(generation.output), - ] - ) - - -def validate_llm_generation(generation, model_name="openai_llm"): - return all( - [ - generation.name == model_name, - generation.usage.input > 0, - # generation.usage.output > 0, todo: enable when streaming output tokens are working - generation.usage.total > 0, - bool(generation.input), - bool(generation.output), - ] - ) - - -def test_callback_init(): - callback = LlamaIndexCallbackHandler( - release="release", - version="version", - session_id="session-id", - user_id="user-id", - metadata={"key": "value"}, - tags=["tag1", "tag2"], - ) - - assert callback.trace is None - - assert callback.langfuse.release == "release" - assert callback.session_id == "session-id" - assert callback.user_id == "user-id" - assert callback.metadata == {"key": "value"} - assert callback.tags == ["tag1", "tag2"] - assert callback.version == "version" - assert callback._task_manager is not None - - -def test_constructor_kwargs(): - callback = LlamaIndexCallbackHandler( - release="release", - version="version", - session_id="session-id", - user_id="user-id", - metadata={"key": "value"}, - tags=["tag1", "tag2"], - ) - get_llama_index_index(callback, force_rebuild=True) - assert callback.trace is not None - - trace_id = callback.trace.id - assert trace_id is not None - - callback.flush() - trace_data = get_api().trace.get(trace_id) - assert trace_data is not None - - assert trace_data.release == "release" - assert trace_data.version == "version" - assert trace_data.session_id == "session-id" - assert trace_data.user_id == "user-id" - assert trace_data.metadata == {"key": "value"} - assert trace_data.tags == ["tag1", "tag2"] - - -def test_callback_from_index_construction(): - callback = LlamaIndexCallbackHandler() - get_llama_index_index(callback, force_rebuild=True) - - assert callback.trace is not None - - trace_id = callback.trace.id - assert trace_id is not None - - callback.flush() - trace_data = get_api().trace.get(trace_id) - assert trace_data is not None - - observations = trace_data.observations - - assert any(o.name == "OpenAIEmbedding" for o in observations) - - # Test embedding generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert len(generations) == 1 # Only one generation event for all embedded chunks - - generation = generations[0] - assert validate_embedding_generation(generation) - - -def test_callback_from_query_engine(): - callback = LlamaIndexCallbackHandler() - index = get_llama_index_index(callback) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - -def test_callback_from_chat_engine(): - callback = LlamaIndexCallbackHandler() - index = get_llama_index_index(callback) - index.as_chat_engine().chat( - "What did the speaker achieve in the past twelve months?" - ) - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - embedding_generations = [g for g in generations if g.name == "OpenAIEmbedding"] - llm_generations = [g for g in generations if g.name == "openai_llm"] - - assert len(embedding_generations) == 1 - assert len(llm_generations) > 0 - - assert all([validate_embedding_generation(g) for g in embedding_generations]) - assert all([validate_llm_generation(g) for g in llm_generations]) - - -def test_callback_from_query_engine_stream(): - callback = LlamaIndexCallbackHandler() - index = get_llama_index_index(callback) - stream_response = index.as_query_engine(streaming=True).query( - "What did the speaker achieve in the past twelve months?" - ) - - for token in stream_response.response_gen: - print(token, end="") - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - embedding_generations = [g for g in generations if g.name == "OpenAIEmbedding"] - llm_generations = [g for g in generations if g.name == "openai_llm"] - - assert len(embedding_generations) == 1 - assert len(llm_generations) > 0 - - assert all([validate_embedding_generation(g) for g in embedding_generations]) - - -def test_callback_from_chat_stream(): - callback = LlamaIndexCallbackHandler() - index = get_llama_index_index(callback) - stream_response = index.as_chat_engine().stream_chat( - "What did the speaker achieve in the past twelve months?" - ) - - for token in stream_response.response_gen: - print(token, end="") - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - embedding_generations = [g for g in generations if g.name == "OpenAIEmbedding"] - llm_generations = [g for g in generations if g.name == "openai_llm"] - - assert len(embedding_generations) == 1 - assert len(llm_generations) > 0 - - assert all([validate_embedding_generation(g) for g in embedding_generations]) - assert all([validate_llm_generation(g) for g in llm_generations]) - - -def test_callback_from_query_pipeline(): - callback = LlamaIndexCallbackHandler() - Settings.callback_manager = CallbackManager([callback]) - - prompt_str = "Please generate related movies to {movie_name}" - prompt_tmpl = PromptTemplate(prompt_str) - models = [ - ("openai_llm", OpenAI(model="gpt-3.5-turbo")), - ("Anthropic_LLM", Anthropic()), - ] - - for model_name, llm in models: - pipeline = QueryPipeline( - chain=[prompt_tmpl, llm], - verbose=True, - callback_manager=Settings.callback_manager, - ) - pipeline.run(movie_name="The Matrix") - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - observations = trace_data.observations - llm_generations = list( - filter( - lambda o: o.type == "GENERATION" and o.name == model_name, - observations, - ) - ) - - assert len(llm_generations) == 1 - assert validate_llm_generation(llm_generations[0], model_name=model_name) - - -def test_callback_with_root_trace(): - callback = LlamaIndexCallbackHandler() - index = get_llama_index_index(callback) - - langfuse = Langfuse(debug=False) - trace_id = create_uuid() - root_trace = langfuse.trace(id=trace_id, name=trace_id) - - callback.set_root(root_trace) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - assert callback.get_trace_id() == trace_id - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - assert trace_data is not None - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - # Test that further observations are also appended to the root trace - index.as_query_engine().query("How did the speaker achieve those goals?") - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert len(generations) == 4 # Two more generations are appended - - second_embedding_generation, second_llm_generation = generations[-2:] - assert validate_embedding_generation(second_embedding_generation) - assert validate_llm_generation(second_llm_generation) - - # Reset the root trace - callback.set_root(None) - - index.as_query_engine().query("How did the speaker achieve those goals?") - new_trace_id = callback.get_trace_id() - assert callback.get_trace_id() != trace_id - - callback.flush() - - trace_data = get_api().trace.get(new_trace_id) - assert trace_data is not None - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - -def test_callback_with_root_trace_and_trace_update(): - callback = LlamaIndexCallbackHandler() - index = get_llama_index_index(callback) - - langfuse = Langfuse(debug=False) - trace_id = create_uuid() - root_trace = langfuse.trace(id=trace_id, name=trace_id) - - callback.set_root(root_trace, update_root=True) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - assert callback.get_trace_id() == trace_id - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - assert trace_data is not None - assert "LlamaIndex" in trace_data.name - assert trace_data.input is not None - assert trace_data.output is not None - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - -def test_callback_with_root_span(): - callback = LlamaIndexCallbackHandler() - index = get_llama_index_index(callback) - - langfuse = Langfuse(debug=False) - trace_id = create_uuid() - span_id = create_uuid() - trace = langfuse.trace(id=trace_id, name=trace_id) - span = trace.span(id=span_id, name=span_id) - - callback.set_root(span) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - assert callback.get_trace_id() == trace_id - callback.flush() - trace_data = get_api().trace.get(trace_id) - - assert trace_data is not None - assert any([o.id == span_id for o in trace_data.observations]) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - # Test that more observations are also appended to the root span - index.as_query_engine().query("How did the speaker achieve those goals?") - - callback.flush() - trace_data = get_api().trace.get(trace_id) - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert len(generations) == 4 # Two more generations are appended - - second_embedding_generation, second_llm_generation = generations[-2:] - assert validate_embedding_generation(second_embedding_generation) - assert validate_llm_generation(second_llm_generation) - - # Reset the root span - callback.set_root(None) - index.as_query_engine().query("How did the speaker achieve those goals?") - - new_trace_id = callback.get_trace_id() - assert new_trace_id != trace_id - callback.flush() - - trace_data = get_api().trace.get(new_trace_id) - - assert trace_data is not None - assert not any([o.id == span_id for o in trace_data.observations]) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - -def test_callback_with_root_span_and_root_update(): - callback = LlamaIndexCallbackHandler() - index = get_llama_index_index(callback) - - langfuse = Langfuse(debug=False) - trace_id = create_uuid() - span_id = create_uuid() - trace = langfuse.trace(id=trace_id, name=trace_id) - span = trace.span(id=span_id, name=span_id) - - callback.set_root(span, update_root=True) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - assert callback.get_trace_id() == trace_id - callback.flush() - trace_data = get_api().trace.get(trace_id) - - assert trace_data is not None - - root_span_data = [o for o in trace_data.observations if o.id == span_id][0] - assert root_span_data is not None - assert "LlamaIndex" in root_span_data.name - assert root_span_data.input is not None - assert root_span_data.output is not None - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - -def test_callback_with_custom_trace_metadata(): - initial_name = "initial-name" - initial_user_id = "initial-user-id" - initial_session_id = "initial-session-id" - initial_tags = ["initial_value1", "initial_value2"] - - callback = LlamaIndexCallbackHandler( - trace_name=initial_name, - user_id=initial_user_id, - session_id=initial_session_id, - tags=initial_tags, - ) - - index = get_llama_index_index(callback) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - - assert trace_data.name == initial_name - assert trace_data.user_id == initial_user_id - assert trace_data.session_id == initial_session_id - assert trace_data.tags == initial_tags - - # Update trace metadata on existing handler - updated_name = "updated-name" - updated_user_id = "updated-user-id" - updated_session_id = "updated-session-id" - updated_tags = ["updated_value1", "updated_value2"] - - callback.set_trace_params( - name=updated_name, - user_id=updated_user_id, - session_id=updated_session_id, - tags=updated_tags, - ) - - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - callback.flush() - trace_data = get_api().trace.get(callback.trace.id) - - assert trace_data.name == updated_name - assert trace_data.user_id == updated_user_id - assert trace_data.session_id == updated_session_id - assert trace_data.tags == updated_tags - - -def test_disabled_langfuse(): - callback = LlamaIndexCallbackHandler(enabled=False) - get_llama_index_index(callback, force_rebuild=True) - - assert callback.trace is not None - - trace_id = callback.trace.id - assert trace_id is not None - - assert callback.langfuse.task_manager._ingestion_queue.empty() - - callback.flush() - - with pytest.raises(Exception): - get_api().trace.get(trace_id) diff --git a/tests/test_llama_index_instrumentation.py b/tests/test_llama_index_instrumentation.py deleted file mode 100644 index 1b179024c..000000000 --- a/tests/test_llama_index_instrumentation.py +++ /dev/null @@ -1,349 +0,0 @@ -from typing import Optional -from langfuse.client import Langfuse -from langfuse.llama_index import LlamaIndexInstrumentor -from llama_index.llms import openai, anthropic -from llama_index.core.prompts import PromptTemplate -from llama_index.core.query_pipeline import QueryPipeline - -from tests.utils import get_api, get_llama_index_index, create_uuid - - -def is_embedding_generation_name(name: Optional[str]) -> bool: - return name is not None and any( - embedding_class in name - for embedding_class in ("OpenAIEmbedding.", "BaseEmbedding") - ) - - -def is_llm_generation_name(name: Optional[str], model_name: str = "OpenAI") -> bool: - return name is not None and f"{model_name}." in name - - -def validate_embedding_generation(generation): - return all( - [ - is_embedding_generation_name(generation.name), - # generation.usage.input == 0, - # generation.usage.output == 0, - # generation.usage.total > 0, # For embeddings, only total tokens are logged - bool(generation.input), - bool(generation.output), - ] - ) - - -def validate_llm_generation(generation, model_name="OpenAI"): - return all( - [ - is_llm_generation_name(generation.name, model_name), - generation.usage.input > 0, - # generation.usage.output > 0, # streamed generations currently broken with no output - generation.usage.total > 0, - bool(generation.input), - # bool(generation.output), # streamed generations currently broken with no output - ] - ) - - -def test_instrumentor_from_index_construction(): - trace_id = create_uuid() - instrumentor = LlamaIndexInstrumentor() - instrumentor.start() - - with instrumentor.observe(trace_id=trace_id): - get_llama_index_index(None, force_rebuild=True) - - instrumentor.flush() - - trace_data = get_api().trace.get(trace_id) - assert trace_data is not None - - observations = trace_data.observations - assert any( - is_embedding_generation_name(o.name) for o in observations if o.name is not None - ) - - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert len(generations) == 1 # Only one generation event for all embedded chunks - - generation = generations[0] - assert validate_embedding_generation(generation) - - -def test_instrumentor_from_query_engine(): - trace_id = create_uuid() - instrumentor = LlamaIndexInstrumentor() - instrumentor.start() - - with instrumentor.observe( - trace_id=trace_id, - user_id="test_user_id", - session_id="test_session_id", - version="test_version", - release="test_release", - metadata={"test_metadata": "test_metadata"}, - tags=["test_tag"], - public=True, - ): - index = get_llama_index_index(None, force_rebuild=True) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - instrumentor.flush() - - trace_data = get_api().trace.get(trace_id) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 3 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generations = [ - g for g in generations if is_embedding_generation_name(g.name) - ] - llm_generations = [g for g in generations if is_llm_generation_name(g.name)] - - assert all([validate_embedding_generation(g) for g in embedding_generations]) - assert all([validate_llm_generation(g) for g in llm_generations]) - - -def test_instrumentor_from_chat_engine(): - trace_id = create_uuid() - instrumentor = LlamaIndexInstrumentor() - instrumentor.start() - - with instrumentor.observe(trace_id=trace_id): - index = get_llama_index_index(None) - index.as_chat_engine().chat( - "What did the speaker achieve in the past twelve months?" - ) - - instrumentor.flush() - trace_data = get_api().trace.get(trace_id) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - - embedding_generations = [ - g for g in generations if is_embedding_generation_name(g.name) - ] - llm_generations = [g for g in generations if is_llm_generation_name(g.name)] - - assert len(embedding_generations) == 1 - assert len(llm_generations) > 0 - - assert all([validate_embedding_generation(g) for g in embedding_generations]) - assert all([validate_llm_generation(g) for g in llm_generations]) - - -def test_instrumentor_from_query_engine_stream(): - trace_id = create_uuid() - - instrumentor = LlamaIndexInstrumentor() - instrumentor.start() - - with instrumentor.observe(trace_id=trace_id): - index = get_llama_index_index(None) - stream_response = index.as_query_engine(streaming=True).query( - "What did the speaker achieve in the past twelve months?" - ) - - for token in stream_response.response_gen: - print(token, end="") - - instrumentor.flush() - trace_data = get_api().trace.get(trace_id) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - embedding_generations = [ - g for g in generations if is_embedding_generation_name(g.name) - ] - llm_generations = [g for g in generations if is_llm_generation_name(g.name)] - - assert len(embedding_generations) == 1 - assert len(llm_generations) > 0 - - assert all([validate_embedding_generation(g) for g in embedding_generations]) - - -def test_instrumentor_from_chat_stream(): - trace_id = create_uuid() - instrumentor = LlamaIndexInstrumentor() - - with instrumentor.observe(trace_id=trace_id): - index = get_llama_index_index(None) - stream_response = index.as_chat_engine().stream_chat( - "What did the speaker achieve in the past twelve months?" - ) - - for token in stream_response.response_gen: - print(token, end="") - - instrumentor.flush() - trace_data = get_api().trace.get(trace_id) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - embedding_generations = [ - g for g in generations if is_embedding_generation_name(g.name) - ] - llm_generations = [g for g in generations if is_llm_generation_name(g.name)] - - assert len(embedding_generations) == 1 - assert len(llm_generations) > 0 - - assert all([validate_embedding_generation(g) for g in embedding_generations]) - assert all([validate_llm_generation(g) for g in llm_generations]) - - -def test_instrumentor_from_query_pipeline(): - instrumentor = LlamaIndexInstrumentor() - - # index = get_llama_index_index(None) - - prompt_str = "Please generate related movies to {movie_name}" - prompt_tmpl = PromptTemplate(prompt_str) - models = [ - ("OpenAI", openai.OpenAI(model="gpt-3.5-turbo")), - ("Anthropic", anthropic.Anthropic()), - ] - - for model_name, llm in models: - trace_id = create_uuid() - pipeline = QueryPipeline( - chain=[prompt_tmpl, llm], - verbose=True, - ) - - with instrumentor.observe(trace_id=trace_id): - pipeline.run(movie_name="The Matrix") - - instrumentor.flush() - - trace_data = get_api().trace.get(trace_id) - observations = trace_data.observations - llm_generations = [ - o - for o in observations - if is_llm_generation_name(o.name, model_name) and o.type == "GENERATION" - ] - - assert len(llm_generations) == 1 - assert validate_llm_generation(llm_generations[0], model_name=model_name) - - -def test_instrumentor_with_root_trace(): - instrumentor = LlamaIndexInstrumentor() - - index = get_llama_index_index(None) - - langfuse = Langfuse() - - trace_id = create_uuid() - langfuse.trace(id=trace_id, name=trace_id) - - with instrumentor.observe(trace_id=trace_id): - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - instrumentor.flush() - trace_data = get_api().trace.get(trace_id) - - assert trace_data is not None - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - -def test_instrumentor_with_root_span(): - instrumentor = LlamaIndexInstrumentor() - index = get_llama_index_index(None) - - langfuse = Langfuse(debug=False) - trace_id = create_uuid() - span_id = create_uuid() - trace = langfuse.trace(id=trace_id, name=trace_id) - trace.span(id=span_id, name=span_id) - - with instrumentor.observe(trace_id=trace_id, parent_observation_id=span_id): - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - instrumentor.flush() - trace_data = get_api().trace.get(trace_id) - - assert trace_data is not None - assert any([o.id == span_id for o in trace_data.observations]) - - # Test LLM generation - generations = sorted( - [o for o in trace_data.observations if o.type == "GENERATION"], - key=lambda o: o.start_time, - ) - assert ( - len(generations) == 2 - ) # One generation event for embedding call of query, one for LLM call - - embedding_generation, llm_generation = generations - assert validate_embedding_generation(embedding_generation) - assert validate_llm_generation(llm_generation) - - -def test_instrumentor_with_custom_trace_metadata(): - initial_name = "initial-name" - initial_user_id = "initial-user-id" - initial_session_id = "initial-session-id" - initial_tags = ["initial_value1", "initial_value2"] - - instrumentor = LlamaIndexInstrumentor() - - trace = Langfuse().trace( - name=initial_name, - user_id=initial_user_id, - session_id=initial_session_id, - tags=initial_tags, - ) - - with instrumentor.observe(trace_id=trace.id, update_parent=False): - index = get_llama_index_index(None) - index.as_query_engine().query( - "What did the speaker achieve in the past twelve months?" - ) - - instrumentor.flush() - trace_data = get_api().trace.get(trace.id) - - assert trace_data.name == initial_name - assert trace_data.user_id == initial_user_id - assert trace_data.session_id == initial_session_id - assert trace_data.tags == initial_tags diff --git a/tests/test_logger.py b/tests/test_logger.py deleted file mode 100644 index 0c5d78b24..000000000 --- a/tests/test_logger.py +++ /dev/null @@ -1,76 +0,0 @@ -import os - -from langfuse import Langfuse -from langfuse.callback import CallbackHandler - -""" -Level Numeric value -logging.DEBUG 10 -logging.INFO 20 -logging.WARNING 30 -logging.ERROR 40 -""" - - -def test_via_env(): - os.environ["LANGFUSE_DEBUG"] = "True" - - langfuse = Langfuse() - - assert langfuse.log.level == 10 - - os.environ.pop("LANGFUSE_DEBUG") - - -def test_via_env_callback(): - os.environ["LANGFUSE_DEBUG"] = "True" - - callback = CallbackHandler() - - assert callback.log.level == 10 - assert callback.langfuse.log.level == 10 - os.environ.pop("LANGFUSE_DEBUG") - - -def test_debug_langfuse(): - langfuse = Langfuse(debug=True) - assert langfuse.log.level == 10 - - -def test_default_langfuse(): - langfuse = Langfuse() - assert langfuse.log.level == 30 - - -def test_default_langfuse_callback(): - callback = CallbackHandler() - assert callback.log.level == 30 - assert callback.log.level == 30 - assert callback.langfuse.log.level == 30 - - -def test_debug_langfuse_callback(): - callback = CallbackHandler(debug=True) - assert callback.log.level == 10 - assert callback.log.level == 10 - assert callback.langfuse.log.level == 10 - - -def test_default_langfuse_trace_callback(): - langfuse = Langfuse() - trace = langfuse.trace(name="test") - callback = trace.getNewHandler() - - assert callback.log.level == 30 - assert callback.log.level == 30 - assert callback.trace.log.level == 30 - - -def test_debug_langfuse_trace_callback(): - langfuse = Langfuse(debug=True) - trace = langfuse.trace(name="test") - callback = trace.getNewHandler() - - assert callback.log.level == 10 - assert callback.log.level == 10 - assert callback.trace.log.level == 10 diff --git a/tests/test_media.py b/tests/test_media.py deleted file mode 100644 index 82211a37e..000000000 --- a/tests/test_media.py +++ /dev/null @@ -1,172 +0,0 @@ -import base64 -import re -from uuid import uuid4 - -import pytest - -from langfuse.client import Langfuse -from langfuse.media import LangfuseMedia -from tests.utils import get_api - -# Test data -SAMPLE_JPEG_BYTES = b"\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x01\x00H\x00H\x00\x00" -SAMPLE_BASE64_DATA_URI = ( - "" -) - - -def test_init_with_base64_data_uri(): - media = LangfuseMedia(base64_data_uri=SAMPLE_BASE64_DATA_URI) - assert media._source == "base64_data_uri" - assert media._content_type == "image/jpeg" - assert media._content_bytes is not None - - -def test_init_with_content_bytes(): - media = LangfuseMedia(content_bytes=SAMPLE_JPEG_BYTES, content_type="image/jpeg") - assert media._source == "bytes" - assert media._content_type == "image/jpeg" - assert media._content_bytes == SAMPLE_JPEG_BYTES - - -def test_init_with_invalid_input(): - # LangfuseMedia logs error but doesn't raise ValueError when initialized without required params - media = LangfuseMedia() - assert media._source is None - assert media._content_type is None - assert media._content_bytes is None - - media = LangfuseMedia(content_bytes=SAMPLE_JPEG_BYTES) # Missing content_type - assert media._source is None - assert media._content_type is None - assert media._content_bytes is None - - media = LangfuseMedia(content_type="image/jpeg") # Missing content_bytes - assert media._source is None - assert media._content_type is None - assert media._content_bytes is None - - -def test_content_length(): - media = LangfuseMedia(content_bytes=SAMPLE_JPEG_BYTES, content_type="image/jpeg") - assert media._content_length == len(SAMPLE_JPEG_BYTES) - - -def test_content_sha256_hash(): - media = LangfuseMedia(content_bytes=SAMPLE_JPEG_BYTES, content_type="image/jpeg") - assert media._content_sha256_hash is not None - # Hash should be base64 encoded - assert base64.b64decode(media._content_sha256_hash) - - -def test_reference_string(): - media = LangfuseMedia(content_bytes=SAMPLE_JPEG_BYTES, content_type="image/jpeg") - # Reference string should be None initially as media_id is not set - assert media._reference_string is None - - # Set media_id - media._media_id = "test-id" - reference = media._reference_string - assert reference is not None - assert "test-id" in reference - assert "image/jpeg" in reference - assert "bytes" in reference - - -def test_parse_reference_string(): - valid_ref = "@@@langfuseMedia:type=image/jpeg|id=test-id|source=base64_data_uri@@@" - result = LangfuseMedia.parse_reference_string(valid_ref) - - assert result["media_id"] == "test-id" - assert result["content_type"] == "image/jpeg" - assert result["source"] == "base64_data_uri" - - -def test_parse_invalid_reference_string(): - with pytest.raises(ValueError): - LangfuseMedia.parse_reference_string("") - - with pytest.raises(ValueError): - LangfuseMedia.parse_reference_string("invalid") - - with pytest.raises(ValueError): - LangfuseMedia.parse_reference_string( - "@@@langfuseMedia:type=image/jpeg@@@" - ) # Missing fields - - -def test_file_handling(): - file_path = "static/puton.jpg" - - media = LangfuseMedia(file_path=file_path, content_type="image/jpeg") - assert media._source == "file" - assert media._content_bytes is not None - assert media._content_type == "image/jpeg" - - -def test_nonexistent_file(): - media = LangfuseMedia(file_path="nonexistent.jpg") - - assert media._source is None - assert media._content_bytes is None - assert media._content_type is None - - -def test_replace_media_reference_string_in_object(): - # Create test audio file - audio_file = "static/joke_prompt.wav" - with open(audio_file, "rb") as f: - mock_audio_bytes = f.read() - - # Create Langfuse client and trace with media - langfuse = Langfuse() - - mock_trace_name = f"test-trace-with-audio-{uuid4()}" - base64_audio = base64.b64encode(mock_audio_bytes).decode() - - trace = langfuse.trace( - name=mock_trace_name, - metadata={ - "context": { - "nested": LangfuseMedia( - base64_data_uri=f"data:audio/wav;base64,{base64_audio}" - ) - } - }, - ) - - langfuse.flush() - - # Verify media reference string format - fetched_trace = get_api().trace.get(trace.id) - media_ref = fetched_trace.metadata["context"]["nested"] - assert re.match( - r"^@@@langfuseMedia:type=audio/wav\|id=.+\|source=base64_data_uri@@@$", - media_ref, - ) - - # Resolve media references back to base64 - resolved_trace = langfuse.resolve_media_references( - obj=fetched_trace, resolve_with="base64_data_uri" - ) - - # Verify resolved base64 matches original - expected_base64 = f"data:audio/wav;base64,{base64_audio}" - assert resolved_trace["metadata"]["context"]["nested"] == expected_base64 - - # Create second trace reusing the media reference - trace2 = langfuse.trace( - name=f"2-{mock_trace_name}", - metadata={ - "context": {"nested": resolved_trace["metadata"]["context"]["nested"]} - }, - ) - - langfuse.flush() - - # Verify second trace has same media reference - fetched_trace2 = get_api().trace.get(trace2.id) - assert ( - fetched_trace2.metadata["context"]["nested"] - == fetched_trace.metadata["context"]["nested"] - ) diff --git a/tests/test_openai.py b/tests/test_openai.py index ddaec0447..e69de29bb 100644 --- a/tests/test_openai.py +++ b/tests/test_openai.py @@ -1,1847 +0,0 @@ -import os - -import pytest -from openai import APIConnectionError -from openai.types.chat.chat_completion_message import ChatCompletionMessage -from pydantic import BaseModel - -from langfuse.client import Langfuse -from langfuse.openai import ( - AsyncAzureOpenAI, - AsyncOpenAI, - AzureOpenAI, - _is_openai_v1, - openai, -) -from tests.utils import create_uuid, encode_file_to_base64, get_api - -chat_func = ( - openai.chat.completions.create if _is_openai_v1() else openai.ChatCompletion.create -) -completion_func = ( - openai.completions.create if _is_openai_v1() else openai.Completion.create -) -expected_err = openai.APIError if _is_openai_v1() else openai.error.AuthenticationError -expected_err_msg = ( - "Connection error." if _is_openai_v1() else "You didn't provide an API key." -) - - -def test_auth_check(): - auth_check = openai.langfuse_auth_check() - - assert auth_check is True - - -def test_openai_chat_completion(): - generation_name = create_uuid() - completion = chat_func( - name=generation_name, - model="gpt-3.5-turbo", - messages=[ - ChatCompletionMessage( - role="assistant", content="You are an expert mathematician" - ), - {"role": "user", "content": "1 + 1 = "}, - ], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - assert len(completion.choices) != 0 - assert generation.data[0].input == [ - { - "annotations": None, - "content": "You are an expert mathematician", - "audio": None, - "function_call": None, - "refusal": None, - "role": "assistant", - "tool_calls": None, - }, - {"content": "1 + 1 = ", "role": "user"}, - ] - assert generation.data[0].type == "GENERATION" - assert "gpt-3.5-turbo-0125" in generation.data[0].model - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert "2" in generation.data[0].output["content"] - assert generation.data[0].output["role"] == "assistant" - - trace = get_api().trace.get(generation.data[0].trace_id) - assert trace.input == [ - { - "annotations": None, - "content": "You are an expert mathematician", - "audio": None, - "function_call": None, - "refusal": None, - "role": "assistant", - "tool_calls": None, - }, - {"role": "user", "content": "1 + 1 = "}, - ] - assert trace.output["content"] == completion.choices[0].message.content - assert trace.output["role"] == completion.choices[0].message.role - - -def test_openai_chat_completion_stream(): - generation_name = create_uuid() - completion = chat_func( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - stream=True, - ) - - assert iter(completion) - - chat_content = "" - for i in completion: - print("\n", i) - chat_content += (i.choices[0].delta.content or "") if i.choices else "" - - assert len(chat_content) > 0 - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert "gpt-3.5-turbo-0125" in generation.data[0].model - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].output == 2 - assert generation.data[0].completion_start_time is not None - - # Completion start time for time-to-first-token - assert generation.data[0].completion_start_time is not None - assert generation.data[0].completion_start_time >= generation.data[0].start_time - assert generation.data[0].completion_start_time <= generation.data[0].end_time - - trace = get_api().trace.get(generation.data[0].trace_id) - assert trace.input == [{"role": "user", "content": "1 + 1 = "}] - assert str(trace.output) == chat_content - - -def test_openai_chat_completion_stream_with_next_iteration(): - generation_name = create_uuid() - completion = chat_func( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - stream=True, - ) - - assert iter(completion) - - chat_content = "" - - while True: - try: - c = next(completion) - chat_content += (c.choices[0].delta.content or "") if c.choices else "" - - except StopIteration: - break - - assert len(chat_content) > 0 - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo-0125" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].output == 2 - assert generation.data[0].completion_start_time is not None - - # Completion start time for time-to-first-token - assert generation.data[0].completion_start_time is not None - assert generation.data[0].completion_start_time >= generation.data[0].start_time - assert generation.data[0].completion_start_time <= generation.data[0].end_time - - trace = get_api().trace.get(generation.data[0].trace_id) - assert trace.input == [{"role": "user", "content": "1 + 1 = "}] - assert str(trace.output) == chat_content - - -def test_openai_chat_completion_stream_fail(): - generation_name = create_uuid() - openai.api_key = "" - - with pytest.raises(expected_err, match=expected_err_msg): - chat_func( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - stream=True, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].level == "ERROR" - assert expected_err_msg in generation.data[0].status_message - assert generation.data[0].output is None - - openai.api_key = os.environ["OPENAI_API_KEY"] - - trace = get_api().trace.get(generation.data[0].trace_id) - assert trace.input == [{"role": "user", "content": "1 + 1 = "}] - assert trace.output is None - - -def test_openai_chat_completion_with_trace(): - generation_name = create_uuid() - trace_id = create_uuid() - langfuse = Langfuse() - - langfuse.trace(id=trace_id) - - chat_func( - name=generation_name, - model="gpt-3.5-turbo", - trace_id=trace_id, - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].trace_id == trace_id - - -def test_openai_chat_completion_with_langfuse_prompt(): - generation_name = create_uuid() - langfuse = Langfuse() - prompt_name = create_uuid() - langfuse.create_prompt(name=prompt_name, prompt="test prompt", is_active=True) - - prompt_client = langfuse.get_prompt(name=prompt_name) - - chat_func( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "Make me laugh"}], - langfuse_prompt=prompt_client, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert isinstance(generation.data[0].prompt_id, str) - - -def test_openai_chat_completion_with_parent_observation_id(): - generation_name = create_uuid() - trace_id = create_uuid() - span_id = create_uuid() - langfuse = Langfuse() - - trace = langfuse.trace(id=trace_id) - trace.span(id=span_id) - - chat_func( - name=generation_name, - model="gpt-3.5-turbo", - trace_id=trace_id, - parent_observation_id=span_id, - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].trace_id == trace_id - assert generation.data[0].parent_observation_id == span_id - - -def test_openai_chat_completion_fail(): - generation_name = create_uuid() - - openai.api_key = "" - - with pytest.raises(expected_err, match=expected_err_msg): - chat_func( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo" - assert generation.data[0].level == "ERROR" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert expected_err_msg in generation.data[0].status_message - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].output is None - - openai.api_key = os.environ["OPENAI_API_KEY"] - - -def test_openai_chat_completion_with_additional_params(): - user_id = create_uuid() - session_id = create_uuid() - tags = ["tag1", "tag2"] - trace_id = create_uuid() - completion = chat_func( - name="user-creation", - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - user_id=user_id, - trace_id=trace_id, - session_id=session_id, - tags=tags, - ) - - openai.flush_langfuse() - - assert len(completion.choices) != 0 - trace = get_api().trace.get(trace_id) - - assert trace.user_id == user_id - assert trace.session_id == session_id - assert trace.tags == tags - - -def test_openai_chat_completion_without_extra_param(): - completion = chat_func( - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - assert len(completion.choices) != 0 - - -def test_openai_chat_completion_two_calls(): - generation_name = create_uuid() - completion = chat_func( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - generation_name_2 = create_uuid() - - completion_2 = chat_func( - name=generation_name_2, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "2 + 2 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert len(completion.choices) != 0 - - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - - generation_2 = get_api().observations.get_many( - name=generation_name_2, type="GENERATION" - ) - - assert len(generation_2.data) != 0 - assert generation_2.data[0].name == generation_name_2 - assert len(completion_2.choices) != 0 - - assert generation_2.data[0].input == [{"content": "2 + 2 = ", "role": "user"}] - - -def test_openai_chat_completion_with_seed(): - generation_name = create_uuid() - completion = chat_func( - name=generation_name, - model="gpt-4o-mini", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - seed=123, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - "seed": 123, - } - assert len(completion.choices) != 0 - - -def test_openai_completion(): - generation_name = create_uuid() - completion = completion_func( - name=generation_name, - model="gpt-3.5-turbo-instruct", - prompt="1 + 1 = ", - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - assert len(completion.choices) != 0 - assert completion.choices[0].text == generation.data[0].output - assert generation.data[0].input == "1 + 1 = " - assert generation.data[0].type == "GENERATION" - assert "gpt-3.5-turbo-instruct" in generation.data[0].model - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].output == "2\n\n1 + 2 = 3\n\n2 + 3 = " - - trace = get_api().trace.get(generation.data[0].trace_id) - assert trace.input == "1 + 1 = " - assert trace.output == completion.choices[0].text - - -def test_openai_completion_stream(): - generation_name = create_uuid() - completion = completion_func( - name=generation_name, - model="gpt-3.5-turbo-instruct", - prompt="1 + 1 = ", - temperature=0, - metadata={"someKey": "someResponse"}, - stream=True, - ) - - assert iter(completion) - content = "" - for i in completion: - content += (i.choices[0].text or "") if i.choices else "" - - openai.flush_langfuse() - - assert len(content) > 0 - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - - assert generation.data[0].input == "1 + 1 = " - assert generation.data[0].type == "GENERATION" - assert "gpt-3.5-turbo-instruct" in generation.data[0].model - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].output == "2\n\n1 + 2 = 3\n\n2 + 3 = " - assert generation.data[0].completion_start_time is not None - - # Completion start time for time-to-first-token - assert generation.data[0].completion_start_time is not None - assert generation.data[0].completion_start_time >= generation.data[0].start_time - assert generation.data[0].completion_start_time <= generation.data[0].end_time - - trace = get_api().trace.get(generation.data[0].trace_id) - assert trace.input == "1 + 1 = " - assert trace.output == content - - -def test_openai_completion_fail(): - generation_name = create_uuid() - - openai.api_key = "" - - with pytest.raises(expected_err, match=expected_err_msg): - completion_func( - name=generation_name, - model="gpt-3.5-turbo-instruct", - prompt="1 + 1 = ", - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - assert generation.data[0].input == "1 + 1 = " - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo-instruct" - assert generation.data[0].level == "ERROR" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert expected_err_msg in generation.data[0].status_message - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].output is None - - openai.api_key = os.environ["OPENAI_API_KEY"] - - -def test_openai_completion_stream_fail(): - generation_name = create_uuid() - openai.api_key = "" - - with pytest.raises(expected_err, match=expected_err_msg): - completion_func( - name=generation_name, - model="gpt-3.5-turbo", - prompt="1 + 1 = ", - temperature=0, - metadata={"someKey": "someResponse"}, - stream=True, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - - assert generation.data[0].input == "1 + 1 = " - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].level == "ERROR" - assert expected_err_msg in generation.data[0].status_message - assert generation.data[0].output is None - - openai.api_key = os.environ["OPENAI_API_KEY"] - - -def test_openai_completion_with_languse_prompt(): - generation_name = create_uuid() - langfuse = Langfuse() - prompt_name = create_uuid() - prompt_client = langfuse.create_prompt( - name=prompt_name, prompt="test prompt", is_active=True - ) - completion_func( - name=generation_name, - model="gpt-3.5-turbo-instruct", - prompt="1 + 1 = ", - temperature=0, - metadata={"someKey": "someResponse"}, - langfuse_prompt=prompt_client, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert isinstance(generation.data[0].prompt_id, str) - - -def test_fails_wrong_name(): - with pytest.raises(TypeError, match="name must be a string"): - completion_func( - name={"key": "generation_name"}, - model="gpt-3.5-turbo-instruct", - prompt="1 + 1 = ", - temperature=0, - ) - - -def test_fails_wrong_metadata(): - with pytest.raises(TypeError, match="metadata must be a dictionary"): - completion_func( - metadata="metadata", - model="gpt-3.5-turbo-instruct", - prompt="1 + 1 = ", - temperature=0, - ) - - -def test_fails_wrong_trace_id(): - with pytest.raises(TypeError, match="trace_id must be a string"): - completion_func( - trace_id={"trace_id": "metadata"}, - model="gpt-3.5-turbo-instruct", - prompt="1 + 1 = ", - temperature=0, - ) - - -@pytest.mark.asyncio -async def test_async_chat(): - client = AsyncOpenAI() - generation_name = create_uuid() - - completion = await client.chat.completions.create( - messages=[{"role": "user", "content": "1 + 1 = "}], - model="gpt-3.5-turbo", - name=generation_name, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert len(completion.choices) != 0 - - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo-0125" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 1, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert "2" in generation.data[0].output["content"] - assert generation.data[0].output["role"] == "assistant" - - -@pytest.mark.asyncio -async def test_async_chat_stream(): - client = AsyncOpenAI() - - generation_name = create_uuid() - - completion = await client.chat.completions.create( - messages=[{"role": "user", "content": "1 + 1 = "}], - model="gpt-3.5-turbo", - name=generation_name, - stream=True, - ) - - async for c in completion: - print(c) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo-0125" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 1, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert "2" in str(generation.data[0].output) - - # Completion start time for time-to-first-token - assert generation.data[0].completion_start_time is not None - assert generation.data[0].completion_start_time >= generation.data[0].start_time - assert generation.data[0].completion_start_time <= generation.data[0].end_time - - -@pytest.mark.asyncio -async def test_async_chat_stream_with_anext(): - client = AsyncOpenAI() - - generation_name = create_uuid() - - completion = await client.chat.completions.create( - messages=[{"role": "user", "content": "Give me a one-liner joke"}], - model="gpt-3.5-turbo", - name=generation_name, - stream=True, - ) - - result = "" - - while True: - try: - c = await completion.__anext__() - - result += (c.choices[0].delta.content or "") if c.choices else "" - - except StopAsyncIteration: - break - - openai.flush_langfuse() - - print(result) - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].input == [ - {"content": "Give me a one-liner joke", "role": "user"} - ] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo-0125" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 1, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - - # Completion start time for time-to-first-token - assert generation.data[0].completion_start_time is not None - assert generation.data[0].completion_start_time >= generation.data[0].start_time - assert generation.data[0].completion_start_time <= generation.data[0].end_time - - -def test_openai_function_call(): - from typing import List - - from pydantic import BaseModel - - generation_name = create_uuid() - - class StepByStepAIResponse(BaseModel): - title: str - steps: List[str] - - import json - - response = openai.chat.completions.create( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "Explain how to assemble a PC"}], - functions=[ - { - "name": "get_answer_for_user_query", - "description": "Get user answer in series of steps", - "parameters": StepByStepAIResponse.schema(), - } - ], - function_call={"name": "get_answer_for_user_query"}, - ) - - output = json.loads(response.choices[0].message.function_call.arguments) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].output is not None - assert "function_call" in generation.data[0].output - - assert output["title"] is not None - - -def test_openai_function_call_streamed(): - from typing import List - - from pydantic import BaseModel - - generation_name = create_uuid() - - class StepByStepAIResponse(BaseModel): - title: str - steps: List[str] - - response = openai.chat.completions.create( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "Explain how to assemble a PC"}], - functions=[ - { - "name": "get_answer_for_user_query", - "description": "Get user answer in series of steps", - "parameters": StepByStepAIResponse.schema(), - } - ], - function_call={"name": "get_answer_for_user_query"}, - stream=True, - ) - - # Consume the stream - for _ in response: - pass - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].output is not None - assert "function_call" in generation.data[0].output - - -def test_openai_tool_call(): - generation_name = create_uuid() - - tools = [ - { - "type": "function", - "function": { - "name": "get_current_weather", - "description": "Get the current weather in a given location", - "parameters": { - "type": "object", - "properties": { - "location": { - "type": "string", - "description": "The city and state, e.g. San Francisco, CA", - }, - "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, - }, - "required": ["location"], - }, - }, - } - ] - messages = [{"role": "user", "content": "What's the weather like in Boston today?"}] - openai.chat.completions.create( - model="gpt-3.5-turbo", - messages=messages, - tools=tools, - tool_choice="auto", - name=generation_name, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert ( - generation.data[0].output["tool_calls"][0]["function"]["name"] - == "get_current_weather" - ) - assert ( - generation.data[0].output["tool_calls"][0]["function"]["arguments"] is not None - ) - assert generation.data[0].input["tools"] == tools - assert generation.data[0].input["messages"] == messages - - -def test_openai_tool_call_streamed(): - generation_name = create_uuid() - - tools = [ - { - "type": "function", - "function": { - "name": "get_current_weather", - "description": "Get the current weather in a given location", - "parameters": { - "type": "object", - "properties": { - "location": { - "type": "string", - "description": "The city and state, e.g. San Francisco, CA", - }, - "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, - }, - "required": ["location"], - }, - }, - } - ] - messages = [{"role": "user", "content": "What's the weather like in Boston today?"}] - response = openai.chat.completions.create( - model="gpt-3.5-turbo", - messages=messages, - tools=tools, - tool_choice="required", - name=generation_name, - stream=True, - ) - - # Consume the stream - for _ in response: - pass - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - - assert ( - generation.data[0].output["tool_calls"][0]["function"]["name"] - == "get_current_weather" - ) - assert ( - generation.data[0].output["tool_calls"][0]["function"]["arguments"] is not None - ) - assert generation.data[0].input["tools"] == tools - assert generation.data[0].input["messages"] == messages - - -def test_azure(): - generation_name = create_uuid() - azure = AzureOpenAI( - api_key="missing", - api_version="2020-07-01-preview", - base_url="https://api.labs.azure.com", - ) - - with pytest.raises(APIConnectionError): - azure.chat.completions.create( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].level == "ERROR" - - -@pytest.mark.asyncio -async def test_async_azure(): - generation_name = create_uuid() - azure = AsyncAzureOpenAI( - api_key="missing", - api_version="2020-07-01-preview", - base_url="https://api.labs.azure.com", - ) - - with pytest.raises(APIConnectionError): - await azure.chat.completions.create( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].level == "ERROR" - - -def test_openai_with_existing_trace_id(): - langfuse = Langfuse() - trace = langfuse.trace( - name="docs-retrieval", - user_id="user__935d7d1d-8625-4ef4-8651-544613e7bd22", - metadata={ - "email": "user@langfuse.com", - }, - tags=["production"], - output="This is a standard output", - input="My custom input", - ) - - langfuse.flush() - - generation_name = create_uuid() - completion = chat_func( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - trace_id=trace.id, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == {"someKey": "someResponse"} - assert len(completion.choices) != 0 - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo-0125" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 0, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert "2" in generation.data[0].output["content"] - assert generation.data[0].output["role"] == "assistant" - - trace = get_api().trace.get(generation.data[0].trace_id) - assert trace.output == "This is a standard output" - assert trace.input == "My custom input" - - -def test_disabled_langfuse(): - # Reimport to reset the state - from langfuse.openai import openai - from langfuse.utils.langfuse_singleton import LangfuseSingleton - - LangfuseSingleton().reset() - - openai.langfuse_enabled = False - - generation_name = create_uuid() - openai.chat.completions.create( - name=generation_name, - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generations = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generations.data) == 0 - - # Reimport to reset the state - LangfuseSingleton().reset() - openai.langfuse_enabled = True - - import importlib - - from langfuse.openai import openai - - importlib.reload(openai) - - -def test_langchain_integration(): - from langchain_openai import ChatOpenAI - - chat = ChatOpenAI(model="gpt-4o") - - result = "" - - for chunk in chat.stream("Hello, how are you?"): - result += chunk.content - - print(result) - assert result != "" - - -def test_structured_output_response_format_kwarg(): - generation_name = ( - "test_structured_output_response_format_kwarg" + create_uuid()[0:10] - ) - - json_schema = { - "name": "math_response", - "strict": True, - "schema": { - "type": "object", - "properties": { - "steps": { - "type": "array", - "items": { - "type": "object", - "properties": { - "explanation": {"type": "string"}, - "output": {"type": "string"}, - }, - "required": ["explanation", "output"], - "additionalProperties": False, - }, - }, - "final_answer": {"type": "string"}, - }, - "required": ["steps", "final_answer"], - "additionalProperties": False, - }, - } - - openai.chat.completions.create( - name=generation_name, - model="gpt-4o-2024-08-06", - messages=[ - {"role": "system", "content": "You are a helpful math tutor."}, - {"role": "user", "content": "solve 8x + 31 = 2"}, - ], - response_format={ - "type": "json_schema", - "json_schema": json_schema, - }, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].metadata == { - "someKey": "someResponse", - "response_format": {"type": "json_schema", "json_schema": json_schema}, - } - - assert generation.data[0].input == [ - {"role": "system", "content": "You are a helpful math tutor."}, - {"content": "solve 8x + 31 = 2", "role": "user"}, - ] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-4o-2024-08-06" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 1, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert generation.data[0].output["role"] == "assistant" - - trace = get_api().trace.get(generation.data[0].trace_id) - assert trace.output is not None - assert trace.input is not None - - -def test_structured_output_beta_completions_parse(): - from typing import List - - from packaging.version import Version - - class CalendarEvent(BaseModel): - name: str - date: str - participants: List[str] - - generation_name = create_uuid() - - params = { - "model": "gpt-4o-2024-08-06", - "messages": [ - {"role": "system", "content": "Extract the event information."}, - { - "role": "user", - "content": "Alice and Bob are going to a science fair on Friday.", - }, - ], - "response_format": CalendarEvent, - "name": generation_name, - } - - # The beta API is only wrapped for this version range. prior to that, implicitly another wrapped method was called - if Version(openai.__version__) < Version("1.50.0"): - params.pop("name") - - openai.beta.chat.completions.parse(**params) - - openai.flush_langfuse() - - if Version(openai.__version__) >= Version("1.50.0"): - # Check the trace and observation properties - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) == 1 - assert generation.data[0].name == generation_name - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-4o-2024-08-06" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - - # Check input and output - assert len(generation.data[0].input) == 2 - assert generation.data[0].input[0]["role"] == "system" - assert generation.data[0].input[1]["role"] == "user" - assert isinstance(generation.data[0].output, dict) - assert "name" in generation.data[0].output["content"] - assert "date" in generation.data[0].output["content"] - assert "participants" in generation.data[0].output["content"] - - # Check usage - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - - # Check trace - trace = get_api().trace.get(generation.data[0].trace_id) - - assert trace.input is not None - assert trace.output is not None - - -@pytest.mark.asyncio -async def test_close_async_stream(): - client = AsyncOpenAI() - generation_name = create_uuid() - - stream = await client.chat.completions.create( - messages=[{"role": "user", "content": "1 + 1 = "}], - model="gpt-3.5-turbo", - name=generation_name, - stream=True, - ) - - async for token in stream: - print(token) - - await stream.close() - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].input == [{"content": "1 + 1 = ", "role": "user"}] - assert generation.data[0].type == "GENERATION" - assert generation.data[0].model == "gpt-3.5-turbo-0125" - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].model_parameters == { - "temperature": 1, - "top_p": 1, - "frequency_penalty": 0, - "max_tokens": "inf", - "presence_penalty": 0, - } - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert "2" in str(generation.data[0].output) - - # Completion start time for time-to-first-token - assert generation.data[0].completion_start_time is not None - assert generation.data[0].completion_start_time >= generation.data[0].start_time - assert generation.data[0].completion_start_time <= generation.data[0].end_time - - -def test_base_64_image_input(): - client = openai.OpenAI() - generation_name = "test_base_64_image_input" + create_uuid()[:8] - - content_path = "static/puton.jpg" - content_type = "image/jpeg" - - base64_image = encode_file_to_base64(content_path) - - client.chat.completions.create( - name=generation_name, - model="gpt-4o-mini", - messages=[ - { - "role": "user", - "content": [ - {"type": "text", "text": "What’s in this image?"}, - { - "type": "image_url", - "image_url": { - "url": f"data:{content_type};base64,{base64_image}" - }, - }, - ], - } - ], - max_tokens=300, - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert generation.data[0].input[0]["content"][0]["text"] == "What’s in this image?" - assert ( - f"@@@langfuseMedia:type={content_type}|id=" - in generation.data[0].input[0]["content"][1]["image_url"]["url"] - ) - assert generation.data[0].type == "GENERATION" - assert "gpt-4o-mini" in generation.data[0].model - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - assert "dog" in generation.data[0].output["content"] - - -def test_audio_input_and_output(): - client = openai.OpenAI() - openai.langfuse_debug = True - generation_name = "test_audio_input_and_output" + create_uuid()[:8] - - content_path = "static/joke_prompt.wav" - base64_string = encode_file_to_base64(content_path) - - client.chat.completions.create( - name=generation_name, - model="gpt-4o-audio-preview", - modalities=["text", "audio"], - audio={"voice": "alloy", "format": "wav"}, - messages=[ - { - "role": "user", - "content": [ - {"type": "text", "text": "Do what this recording says."}, - { - "type": "input_audio", - "input_audio": {"data": base64_string, "format": "wav"}, - }, - ], - }, - ], - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - assert generation.data[0].name == generation_name - assert ( - generation.data[0].input[0]["content"][0]["text"] - == "Do what this recording says." - ) - assert ( - "@@@langfuseMedia:type=audio/wav|id=" - in generation.data[0].input[0]["content"][1]["input_audio"]["data"] - ) - assert generation.data[0].type == "GENERATION" - assert "gpt-4o-audio-preview" in generation.data[0].model - assert generation.data[0].start_time is not None - assert generation.data[0].end_time is not None - assert generation.data[0].start_time < generation.data[0].end_time - assert generation.data[0].usage.input is not None - assert generation.data[0].usage.output is not None - assert generation.data[0].usage.total is not None - print(generation.data[0].output) - assert ( - "@@@langfuseMedia:type=audio/wav|id=" - in generation.data[0].output["audio"]["data"] - ) - - -def test_response_api_text_input(): - client = openai.OpenAI() - generation_name = "test_response_api_text_input" + create_uuid()[:8] - - client.responses.create( - name=generation_name, - model="gpt-4o", - input="Tell me a three sentence bedtime story about a unicorn.", - ) - - openai.flush_langfuse() - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - generationData = generation.data[0] - assert generationData.name == generation_name - assert ( - generation.data[0].input - == "Tell me a three sentence bedtime story about a unicorn." - ) - assert generationData.type == "GENERATION" - assert "gpt-4o" in generationData.model - assert generationData.start_time is not None - assert generationData.end_time is not None - assert generationData.start_time < generationData.end_time - assert generationData.usage.input is not None - assert generationData.usage.output is not None - assert generationData.usage.total is not None - assert generationData.output is not None - - -def test_response_api_image_input(): - client = openai.OpenAI() - generation_name = "test_response_api_image_input" + create_uuid()[:8] - - client.responses.create( - name=generation_name, - model="gpt-4o", - input=[ - { - "role": "user", - "content": [ - {"type": "input_text", "text": "what is in this image?"}, - { - "type": "input_image", - "image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", - }, - ], - } - ], - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - generationData = generation.data[0] - assert generationData.name == generation_name - assert generation.data[0].input[0]["content"][0]["text"] == "what is in this image?" - assert generationData.type == "GENERATION" - assert "gpt-4o" in generationData.model - assert generationData.start_time is not None - assert generationData.end_time is not None - assert generationData.start_time < generationData.end_time - assert generationData.usage.input is not None - assert generationData.usage.output is not None - assert generationData.usage.total is not None - assert generationData.output is not None - - -def test_response_api_web_search(): - client = openai.OpenAI() - generation_name = "test_response_api_web_search" + create_uuid()[:8] - - client.responses.create( - name=generation_name, - model="gpt-4o", - tools=[{"type": "web_search_preview"}], - input="What was a positive news story from today?", - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - generationData = generation.data[0] - assert generationData.name == generation_name - assert generationData.input == "What was a positive news story from today?" - assert generationData.type == "GENERATION" - assert "gpt-4o" in generationData.model - assert generationData.start_time is not None - assert generationData.end_time is not None - assert generationData.start_time < generationData.end_time - assert generationData.usage.input is not None - assert generationData.usage.output is not None - assert generationData.usage.total is not None - assert generationData.output is not None - assert generationData.metadata is not None - - -def test_response_api_streaming(): - client = openai.OpenAI() - generation_name = "test_response_api_streaming" + create_uuid()[:8] - - response = client.responses.create( - name=generation_name, - model="gpt-4o", - instructions="You are a helpful assistant.", - input="Hello!", - stream=True, - ) - - for _ in response: - continue - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - generationData = generation.data[0] - assert generationData.name == generation_name - assert generation.data[0].input == "Hello!" - assert generationData.type == "GENERATION" - assert "gpt-4o" in generationData.model - assert generationData.start_time is not None - assert generationData.end_time is not None - assert generationData.start_time < generationData.end_time - assert generationData.usage.input is not None - assert generationData.usage.output is not None - assert generationData.usage.total is not None - assert generationData.output is not None - assert generationData.metadata is not None - assert generationData.metadata["instructions"] == "You are a helpful assistant." - - -def test_response_api_functions(): - client = openai.OpenAI() - generation_name = "test_response_api_functions" + create_uuid()[:8] - - tools = [ - { - "type": "function", - "name": "get_current_weather", - "description": "Get the current weather in a given location", - "parameters": { - "type": "object", - "properties": { - "location": { - "type": "string", - "description": "The city and state, e.g. San Francisco, CA", - }, - "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}, - }, - "required": ["location", "unit"], - }, - } - ] - - client.responses.create( - name=generation_name, - model="gpt-4o", - tools=tools, - input="What is the weather like in Boston today?", - tool_choice="auto", - ) - - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - generationData = generation.data[0] - assert generationData.name == generation_name - assert generation.data[0].input == "What is the weather like in Boston today?" - assert generationData.type == "GENERATION" - assert "gpt-4o" in generationData.model - assert generationData.start_time is not None - assert generationData.end_time is not None - assert generationData.start_time < generationData.end_time - assert generationData.usage.input is not None - assert generationData.usage.output is not None - assert generationData.usage.total is not None - assert generationData.output is not None - assert generationData.metadata is not None - - -def test_response_api_reasoning(): - client = openai.OpenAI() - generation_name = "test_response_api_reasoning" + create_uuid()[:8] - - client.responses.create( - name=generation_name, - model="o3-mini", - input="How much wood would a woodchuck chuck?", - reasoning={"effort": "high"}, - ) - openai.flush_langfuse() - - generation = get_api().observations.get_many( - name=generation_name, type="GENERATION" - ) - - assert len(generation.data) != 0 - generationData = generation.data[0] - assert generationData.name == generation_name - assert generation.data[0].input == "How much wood would a woodchuck chuck?" - assert generationData.type == "GENERATION" - assert "o3-mini" in generationData.model - assert generationData.start_time is not None - assert generationData.end_time is not None - assert generationData.start_time < generationData.end_time - assert generationData.usage.input is not None - assert generationData.usage.output is not None - assert generationData.usage.total is not None - assert generationData.output is not None - assert generationData.metadata is not None diff --git a/tests/test_prompt.py b/tests/test_prompt.py deleted file mode 100644 index 8c6660f57..000000000 --- a/tests/test_prompt.py +++ /dev/null @@ -1,1098 +0,0 @@ -from time import sleep -from unittest.mock import Mock, patch - -import openai -import pytest - -from langfuse.api.resources.prompts import Prompt_Chat, Prompt_Text -from langfuse.client import Langfuse -from langfuse.model import ChatPromptClient, TextPromptClient -from langfuse.prompt_cache import DEFAULT_PROMPT_CACHE_TTL_SECONDS, PromptCacheItem -from tests.utils import create_uuid, get_api - - -def test_create_prompt(): - langfuse = Langfuse() - prompt_name = create_uuid() - prompt_client = langfuse.create_prompt( - name=prompt_name, - prompt="test prompt", - labels=["production"], - commit_message="initial commit", - ) - - second_prompt_client = langfuse.get_prompt(prompt_name) - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.config == second_prompt_client.config - assert prompt_client.commit_message == second_prompt_client.commit_message - assert prompt_client.config == {} - - -def test_create_prompt_with_is_active(): - # Backward compatibility test for is_active - langfuse = Langfuse() - prompt_name = create_uuid() - prompt_client = langfuse.create_prompt( - name=prompt_name, prompt="test prompt", is_active=True - ) - - second_prompt_client = langfuse.get_prompt(prompt_name) - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.config == second_prompt_client.config - assert prompt_client.labels == ["production", "latest"] - assert prompt_client.config == {} - - -def test_create_prompt_with_special_chars_in_name(): - langfuse = Langfuse() - prompt_name = create_uuid() + "special chars !@#$%^&*() +" - prompt_client = langfuse.create_prompt( - name=prompt_name, - prompt="test prompt", - labels=["production"], - tags=["test"], - ) - - second_prompt_client = langfuse.get_prompt(prompt_name) - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.tags == second_prompt_client.tags - assert prompt_client.config == second_prompt_client.config - assert prompt_client.config == {} - - -def test_create_chat_prompt(): - langfuse = Langfuse() - prompt_name = create_uuid() - - prompt_client = langfuse.create_prompt( - name=prompt_name, - prompt=[ - {"role": "system", "content": "test prompt 1 with {{animal}}"}, - {"role": "user", "content": "test prompt 2 with {{occupation}}"}, - ], - labels=["production"], - tags=["test"], - type="chat", - commit_message="initial commit", - ) - - second_prompt_client = langfuse.get_prompt(prompt_name, type="chat") - - # Create a test generation - completion = openai.chat.completions.create( - model="gpt-3.5-turbo", - messages=prompt_client.compile(animal="dog", occupation="doctor"), - ) - - assert len(completion.choices) > 0 - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.config == second_prompt_client.config - assert prompt_client.labels == ["production", "latest"] - assert prompt_client.tags == second_prompt_client.tags - assert prompt_client.commit_message == second_prompt_client.commit_message - assert prompt_client.config == {} - - -def test_compiling_chat_prompt(): - langfuse = Langfuse() - prompt_name = create_uuid() - - prompt_client = langfuse.create_prompt( - name=prompt_name, - prompt=[ - { - "role": "system", - "content": "test prompt 1 with {{state}} {{target}} {{state}}", - }, - {"role": "user", "content": "test prompt 2 with {{state}}"}, - ], - labels=["production"], - type="chat", - ) - - second_prompt_client = langfuse.get_prompt(prompt_name, type="chat") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.labels == ["production", "latest"] - - assert second_prompt_client.compile(target="world", state="great") == [ - {"role": "system", "content": "test prompt 1 with great world great"}, - {"role": "user", "content": "test prompt 2 with great"}, - ] - - -def test_compiling_prompt(): - langfuse = Langfuse() - - prompt_client = langfuse.create_prompt( - name="test", - prompt='Hello, {{target}}! I hope you are {{state}}. {{undefined_variable}}. And here is some JSON that should not be compiled: {{ "key": "value" }} \ - Here is a custom var for users using str.format instead of the mustache-style double curly braces: {custom_var}', - is_active=True, - ) - - second_prompt_client = langfuse.get_prompt("test") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.labels == ["production", "latest"] - - compiled = second_prompt_client.compile(target="world", state="great") - - assert ( - compiled - == 'Hello, world! I hope you are great. {{undefined_variable}}. And here is some JSON that should not be compiled: {{ "key": "value" }} \ - Here is a custom var for users using str.format instead of the mustache-style double curly braces: {custom_var}' - ) - - -def test_compiling_prompt_without_character_escaping(): - langfuse = Langfuse() - - prompt_client = langfuse.create_prompt( - name="test", - prompt="Hello, {{ some_json }}", - is_active=True, - ) - - second_prompt_client = langfuse.get_prompt("test") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.labels == ["production", "latest"] - - some_json = '{"key": "value"}' - compiled = second_prompt_client.compile(some_json=some_json) - - assert compiled == 'Hello, {"key": "value"}' - - -def test_compiling_prompt_with_content_as_variable_name(): - langfuse = Langfuse() - - prompt_client = langfuse.create_prompt( - name="test", - prompt="Hello, {{ content }}!", - is_active=True, - ) - - second_prompt_client = langfuse.get_prompt("test") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.labels == ["production", "latest"] - - compiled = second_prompt_client.compile(content="Jane") - - assert compiled == "Hello, Jane!" - - -def test_create_prompt_with_null_config(): - langfuse = Langfuse(debug=False) - - langfuse.create_prompt( - name="test_null_config", - prompt="Hello, world! I hope you are great", - is_active=True, - config=None, - ) - - prompt = langfuse.get_prompt("test_null_config") - - assert prompt.config == {} - - -def test_create_prompt_with_tags(): - langfuse = Langfuse(debug=False) - prompt_name = create_uuid() - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - tags=["tag1", "tag2"], - ) - - prompt = langfuse.get_prompt(prompt_name, version=1) - - assert prompt.tags == ["tag1", "tag2"] - - -def test_create_prompt_with_empty_tags(): - langfuse = Langfuse(debug=False) - prompt_name = create_uuid() - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - tags=[], - ) - - prompt = langfuse.get_prompt(prompt_name, version=1) - - assert prompt.tags == [] - - -def test_create_prompt_with_previous_tags(): - langfuse = Langfuse(debug=False) - prompt_name = create_uuid() - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - ) - - prompt = langfuse.get_prompt(prompt_name, version=1) - - assert prompt.tags == [] - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - tags=["tag1", "tag2"], - ) - - prompt_v2 = langfuse.get_prompt(prompt_name, version=2) - - assert prompt_v2.tags == ["tag1", "tag2"] - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - ) - - prompt_v3 = langfuse.get_prompt(prompt_name, version=3) - - assert prompt_v3.tags == ["tag1", "tag2"] - - -def test_remove_prompt_tags(): - langfuse = Langfuse(debug=False) - prompt_name = create_uuid() - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - tags=["tag1", "tag2"], - ) - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - tags=[], - ) - - prompt_v1 = langfuse.get_prompt(prompt_name, version=1) - prompt_v2 = langfuse.get_prompt(prompt_name, version=2) - - assert prompt_v1.tags == [] - assert prompt_v2.tags == [] - - -def test_update_prompt_tags(): - langfuse = Langfuse(debug=False) - prompt_name = create_uuid() - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - tags=["tag1", "tag2"], - ) - - prompt_v1 = langfuse.get_prompt(prompt_name, version=1) - - assert prompt_v1.tags == ["tag1", "tag2"] - - langfuse.create_prompt( - name=prompt_name, - prompt="Hello, world! I hope you are great", - tags=["tag3", "tag4"], - ) - - prompt_v2 = langfuse.get_prompt(prompt_name, version=2) - - assert prompt_v2.tags == ["tag3", "tag4"] - - -def test_get_prompt_by_version_or_label(): - langfuse = Langfuse() - prompt_name = create_uuid() - - for i in range(3): - langfuse.create_prompt( - name=prompt_name, - prompt="test prompt " + str(i + 1), - labels=["production"] if i == 1 else [], - ) - - default_prompt_client = langfuse.get_prompt(prompt_name) - assert default_prompt_client.version == 2 - assert default_prompt_client.prompt == "test prompt 2" - assert default_prompt_client.labels == ["production"] - - first_prompt_client = langfuse.get_prompt(prompt_name, 1) - assert first_prompt_client.version == 1 - assert first_prompt_client.prompt == "test prompt 1" - assert first_prompt_client.labels == [] - - second_prompt_client = langfuse.get_prompt(prompt_name, version=2) - assert second_prompt_client.version == 2 - assert second_prompt_client.prompt == "test prompt 2" - assert second_prompt_client.labels == ["production"] - - third_prompt_client = langfuse.get_prompt(prompt_name, label="latest") - assert third_prompt_client.version == 3 - assert third_prompt_client.prompt == "test prompt 3" - assert third_prompt_client.labels == ["latest"] - - -def test_prompt_end_to_end(): - langfuse = Langfuse(debug=False) - - langfuse.create_prompt( - name="test", - prompt="Hello, {{target}}! I hope you are {{state}}.", - is_active=True, - config={"temperature": 0.5}, - ) - - prompt = langfuse.get_prompt("test") - - prompt_str = prompt.compile(target="world", state="great") - assert prompt_str == "Hello, world! I hope you are great." - assert prompt.config == {"temperature": 0.5} - - generation = langfuse.generation(input=prompt_str, prompt=prompt) - - # to check that these do not error - generation.update(prompt=prompt) - generation.end(prompt=prompt) - - langfuse.flush() - - api = get_api() - - trace_id = langfuse.get_trace_id() - - trace = api.trace.get(trace_id) - - assert len(trace.observations) == 1 - - generation = trace.observations[0] - assert generation.prompt_id is not None - - observation = api.observations.get(generation.id) - - assert observation.prompt_id is not None - - -@pytest.fixture -def langfuse(): - langfuse_instance = Langfuse() - langfuse_instance.client = Mock() - langfuse_instance.log = Mock() - - return langfuse_instance - - -# Fetching a new prompt when nothing in cache -def test_get_fresh_prompt(langfuse): - prompt_name = "test" - prompt = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - type="text", - labels=[], - config={}, - tags=[], - ) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result = langfuse.get_prompt(prompt_name, fallback="fallback") - mock_server_call.assert_called_once_with( - prompt_name, - version=None, - label=None, - request_options=None, - ) - - assert result == TextPromptClient(prompt) - - -# Should throw an error if prompt name is unspecified -def test_throw_if_name_unspecified(langfuse): - prompt_name = "" - - with pytest.raises(ValueError) as exc_info: - langfuse.get_prompt(prompt_name) - - assert "Prompt name cannot be empty" in str(exc_info.value) - - -# Should throw an error if nothing in cache and fetch fails -def test_throw_when_failing_fetch_and_no_cache(langfuse): - prompt_name = "test" - - mock_server_call = langfuse.client.prompts.get - mock_server_call.side_effect = Exception("Prompt not found") - - with pytest.raises(Exception) as exc_info: - langfuse.get_prompt(prompt_name) - - assert "Prompt not found" in str(exc_info.value) - - -def test_using_custom_prompt_timeouts(langfuse): - prompt_name = "test" - prompt = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - type="text", - labels=[], - config={}, - tags=[], - ) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result = langfuse.get_prompt( - prompt_name, fallback="fallback", fetch_timeout_seconds=1000 - ) - mock_server_call.assert_called_once_with( - prompt_name, - version=None, - label=None, - request_options={"timeout_in_seconds": 1000}, - ) - - assert result == TextPromptClient(prompt) - - -# Should throw an error if cache_ttl_seconds is passed as positional rather than keyword argument -def test_throw_if_cache_ttl_seconds_positional_argument(langfuse): - prompt_name = "test" - version = 1 - ttl_seconds = 20 - - with pytest.raises(TypeError) as exc_info: - langfuse.get_prompt(prompt_name, version, ttl_seconds) - - assert "positional arguments" in str(exc_info.value) - - -# Should return cached prompt if not expired -def test_get_valid_cached_prompt(langfuse): - prompt_name = "test" - prompt = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - type="text", - labels=[], - config={}, - tags=[], - ) - prompt_client = TextPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name, fallback="fallback") - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - result_call_2 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 - assert result_call_2 == prompt_client - - -# Should return cached chat prompt if not expired when fetching by label -def test_get_valid_cached_chat_prompt_by_label(langfuse): - prompt_name = "test" - prompt = Prompt_Chat( - name=prompt_name, - version=1, - prompt=[{"role": "system", "content": "Make me laugh"}], - labels=["test"], - type="chat", - config={}, - tags=[], - ) - prompt_client = ChatPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name, label="test") - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - result_call_2 = langfuse.get_prompt(prompt_name, label="test") - assert mock_server_call.call_count == 1 - assert result_call_2 == prompt_client - - -# Should return cached chat prompt if not expired when fetching by version -def test_get_valid_cached_chat_prompt_by_version(langfuse): - prompt_name = "test" - prompt = Prompt_Chat( - name=prompt_name, - version=1, - prompt=[{"role": "system", "content": "Make me laugh"}], - labels=["test"], - type="chat", - config={}, - tags=[], - ) - prompt_client = ChatPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name, version=1) - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - result_call_2 = langfuse.get_prompt(prompt_name, version=1) - assert mock_server_call.call_count == 1 - assert result_call_2 == prompt_client - - -# Should return cached chat prompt if fetching the default prompt or the 'production' labeled one -def test_get_valid_cached_production_chat_prompt(langfuse): - prompt_name = "test" - prompt = Prompt_Chat( - name=prompt_name, - version=1, - prompt=[{"role": "system", "content": "Make me laugh"}], - labels=["test"], - type="chat", - config={}, - tags=[], - ) - prompt_client = ChatPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - result_call_2 = langfuse.get_prompt(prompt_name, label="production") - assert mock_server_call.call_count == 1 - assert result_call_2 == prompt_client - - -# Should return cached chat prompt if not expired -def test_get_valid_cached_chat_prompt(langfuse): - prompt_name = "test" - prompt = Prompt_Chat( - name=prompt_name, - version=1, - prompt=[{"role": "system", "content": "Make me laugh"}], - labels=[], - type="chat", - config={}, - tags=[], - ) - prompt_client = ChatPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - result_call_2 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 - assert result_call_2 == prompt_client - - -# Should refetch and return new prompt if cached one is expired according to custom TTL -@patch.object(PromptCacheItem, "get_epoch_seconds") -def test_get_fresh_prompt_when_expired_cache_custom_ttl(mock_time, langfuse: Langfuse): - mock_time.return_value = 0 - ttl_seconds = 20 - - prompt_name = "test" - prompt = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - config={"temperature": 0.9}, - labels=[], - type="text", - tags=[], - ) - prompt_client = TextPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name, cache_ttl_seconds=ttl_seconds) - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - # Set time to just BEFORE cache expiry - mock_time.return_value = ttl_seconds - 1 - - result_call_2 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 # No new call - assert result_call_2 == prompt_client - - # Set time to just AFTER cache expiry - mock_time.return_value = ttl_seconds + 1 - - result_call_3 = langfuse.get_prompt(prompt_name) - - while True: - if langfuse.prompt_cache._task_manager.active_tasks() == 0: - break - sleep(0.1) - - assert mock_server_call.call_count == 2 # New call - assert result_call_3 == prompt_client - - -# Should disable caching when cache_ttl_seconds is set to 0 -@patch.object(PromptCacheItem, "get_epoch_seconds") -def test_disable_caching_when_ttl_zero(mock_time, langfuse: Langfuse): - mock_time.return_value = 0 - prompt_name = "test" - - # Initial prompt - prompt1 = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - labels=[], - type="text", - config={}, - tags=[], - ) - - # Updated prompts - prompt2 = Prompt_Text( - name=prompt_name, - version=2, - prompt="Tell me a joke", - labels=[], - type="text", - config={}, - tags=[], - ) - prompt3 = Prompt_Text( - name=prompt_name, - version=3, - prompt="Share a funny story", - labels=[], - type="text", - config={}, - tags=[], - ) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.side_effect = [prompt1, prompt2, prompt3] - - # First call - result1 = langfuse.get_prompt(prompt_name, cache_ttl_seconds=0) - assert mock_server_call.call_count == 1 - assert result1 == TextPromptClient(prompt1) - - # Second call - result2 = langfuse.get_prompt(prompt_name, cache_ttl_seconds=0) - assert mock_server_call.call_count == 2 - assert result2 == TextPromptClient(prompt2) - - # Third call - result3 = langfuse.get_prompt(prompt_name, cache_ttl_seconds=0) - assert mock_server_call.call_count == 3 - assert result3 == TextPromptClient(prompt3) - - # Verify that all results are different - assert result1 != result2 != result3 - - -# Should return stale prompt immediately if cached one is expired according to default TTL and add to refresh promise map -@patch.object(PromptCacheItem, "get_epoch_seconds") -def test_get_stale_prompt_when_expired_cache_default_ttl(mock_time, langfuse: Langfuse): - import logging - - logging.basicConfig(level=logging.DEBUG) - mock_time.return_value = 0 - - prompt_name = "test" - prompt = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - labels=[], - type="text", - config={}, - tags=[], - ) - prompt_client = TextPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - # Update the version of the returned mocked prompt - updated_prompt = Prompt_Text( - name=prompt_name, - version=2, - prompt="Make me laugh", - labels=[], - type="text", - config={}, - tags=[], - ) - mock_server_call.return_value = updated_prompt - - # Set time to just AFTER cache expiry - mock_time.return_value = DEFAULT_PROMPT_CACHE_TTL_SECONDS + 1 - - stale_result = langfuse.get_prompt(prompt_name) - assert stale_result == prompt_client - - # Ensure that only one refresh is triggered despite multiple calls - # Cannot check for value as the prompt might have already been updated - langfuse.get_prompt(prompt_name) - langfuse.get_prompt(prompt_name) - langfuse.get_prompt(prompt_name) - langfuse.get_prompt(prompt_name) - - while True: - if langfuse.prompt_cache._task_manager.active_tasks() == 0: - break - sleep(0.1) - - assert mock_server_call.call_count == 2 # Only one new call to server - - # Check that the prompt has been updated after refresh - updated_result = langfuse.get_prompt(prompt_name) - assert updated_result.version == 2 - assert updated_result == TextPromptClient(updated_prompt) - - -# Should refetch and return new prompt if cached one is expired according to default TTL -@patch.object(PromptCacheItem, "get_epoch_seconds") -def test_get_fresh_prompt_when_expired_cache_default_ttl(mock_time, langfuse: Langfuse): - mock_time.return_value = 0 - - prompt_name = "test" - prompt = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - labels=[], - type="text", - config={}, - tags=[], - ) - prompt_client = TextPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - # Set time to just BEFORE cache expiry - mock_time.return_value = DEFAULT_PROMPT_CACHE_TTL_SECONDS - 1 - - result_call_2 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 # No new call - assert result_call_2 == prompt_client - - # Set time to just AFTER cache expiry - mock_time.return_value = DEFAULT_PROMPT_CACHE_TTL_SECONDS + 1 - - result_call_3 = langfuse.get_prompt(prompt_name) - while True: - if langfuse.prompt_cache._task_manager.active_tasks() == 0: - break - sleep(0.1) - - assert mock_server_call.call_count == 2 # New call - assert result_call_3 == prompt_client - - -# Should return expired prompt if refetch fails -@patch.object(PromptCacheItem, "get_epoch_seconds") -def test_get_expired_prompt_when_failing_fetch(mock_time, langfuse: Langfuse): - mock_time.return_value = 0 - - prompt_name = "test" - prompt = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - labels=[], - type="text", - config={}, - tags=[], - ) - prompt_client = TextPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name) - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - # Set time to just AFTER cache expiry - mock_time.return_value = DEFAULT_PROMPT_CACHE_TTL_SECONDS + 1 - - mock_server_call.side_effect = Exception("Server error") - - result_call_2 = langfuse.get_prompt(prompt_name, max_retries=1) - while True: - if langfuse.prompt_cache._task_manager.active_tasks() == 0: - break - sleep(0.1) - - assert mock_server_call.call_count == 2 - assert result_call_2 == prompt_client - - -# Should fetch new prompt if version changes -def test_get_fresh_prompt_when_version_changes(langfuse: Langfuse): - prompt_name = "test" - prompt = Prompt_Text( - name=prompt_name, - version=1, - prompt="Make me laugh", - labels=[], - type="text", - config={}, - tags=[], - ) - prompt_client = TextPromptClient(prompt) - - mock_server_call = langfuse.client.prompts.get - mock_server_call.return_value = prompt - - result_call_1 = langfuse.get_prompt(prompt_name, version=1) - assert mock_server_call.call_count == 1 - assert result_call_1 == prompt_client - - version_changed_prompt = Prompt_Text( - name=prompt_name, - version=2, - labels=[], - prompt="Make me laugh", - type="text", - config={}, - tags=[], - ) - version_changed_prompt_client = TextPromptClient(version_changed_prompt) - mock_server_call.return_value = version_changed_prompt - - result_call_2 = langfuse.get_prompt(prompt_name, version=2) - assert mock_server_call.call_count == 2 - assert result_call_2 == version_changed_prompt_client - - -def test_do_not_return_fallback_if_fetch_success(): - langfuse = Langfuse() - prompt_name = create_uuid() - prompt_client = langfuse.create_prompt( - name=prompt_name, - prompt="test prompt", - labels=["production"], - ) - - second_prompt_client = langfuse.get_prompt(prompt_name, fallback="fallback") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.config == second_prompt_client.config - assert prompt_client.config == {} - - -def test_fallback_text_prompt(): - langfuse = Langfuse() - - fallback_text_prompt = "this is a fallback text prompt with {{variable}}" - - # Should throw an error if prompt not found and no fallback provided - with pytest.raises(Exception): - langfuse.get_prompt("nonexistent_prompt") - - prompt = langfuse.get_prompt("nonexistent_prompt", fallback=fallback_text_prompt) - - assert prompt.prompt == fallback_text_prompt - assert ( - prompt.compile(variable="value") == "this is a fallback text prompt with value" - ) - - -def test_fallback_chat_prompt(): - langfuse = Langfuse() - fallback_chat_prompt = [ - {"role": "system", "content": "fallback system"}, - {"role": "user", "content": "fallback user name {{name}}"}, - ] - - # Should throw an error if prompt not found and no fallback provided - with pytest.raises(Exception): - langfuse.get_prompt("nonexistent_chat_prompt", type="chat") - - prompt = langfuse.get_prompt( - "nonexistent_chat_prompt", type="chat", fallback=fallback_chat_prompt - ) - - assert prompt.prompt == fallback_chat_prompt - assert prompt.compile(name="Jane") == [ - {"role": "system", "content": "fallback system"}, - {"role": "user", "content": "fallback user name Jane"}, - ] - - -def test_do_not_link_observation_if_fallback(): - langfuse = Langfuse() - trace_id = create_uuid() - - fallback_text_prompt = "this is a fallback text prompt with {{variable}}" - - # Should throw an error if prompt not found and no fallback provided - with pytest.raises(Exception): - langfuse.get_prompt("nonexistent_prompt") - - prompt = langfuse.get_prompt("nonexistent_prompt", fallback=fallback_text_prompt) - - langfuse.trace(id=trace_id).generation(prompt=prompt, input="this is a test input") - langfuse.flush() - - api = get_api() - trace = api.trace.get(trace_id) - - assert len(trace.observations) == 1 - assert trace.observations[0].prompt_id is None - - -def test_variable_names_on_content_with_variable_names(): - langfuse = Langfuse() - - prompt_client = langfuse.create_prompt( - name="test_variable_names_1", - prompt="test prompt with var names {{ var1 }} {{ var2 }}", - is_active=True, - type="text", - ) - - second_prompt_client = langfuse.get_prompt("test_variable_names_1") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.labels == ["production", "latest"] - - var_names = second_prompt_client.variables - - assert var_names == ["var1", "var2"] - - -def test_variable_names_on_content_with_no_variable_names(): - langfuse = Langfuse() - - prompt_client = langfuse.create_prompt( - name="test_variable_names_2", - prompt="test prompt with no var names", - is_active=True, - type="text", - ) - - second_prompt_client = langfuse.get_prompt("test_variable_names_2") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.labels == ["production", "latest"] - - var_names = second_prompt_client.variables - - assert var_names == [] - - -def test_variable_names_on_content_with_variable_names_chat_messages(): - langfuse = Langfuse() - - prompt_client = langfuse.create_prompt( - name="test_variable_names_3", - prompt=[ - { - "role": "system", - "content": "test prompt with template vars {{ var1 }} {{ var2 }}", - }, - {"role": "user", "content": "test prompt 2 with template vars {{ var3 }}"}, - ], - is_active=True, - type="chat", - ) - - second_prompt_client = langfuse.get_prompt("test_variable_names_3") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.labels == ["production", "latest"] - - var_names = second_prompt_client.variables - - assert var_names == ["var1", "var2", "var3"] - - -def test_variable_names_on_content_with_no_variable_names_chat_messages(): - langfuse = Langfuse() - - prompt_client = langfuse.create_prompt( - name="test_variable_names_4", - prompt=[ - {"role": "system", "content": "test prompt with no template vars"}, - {"role": "user", "content": "test prompt 2 with no template vars"}, - ], - is_active=True, - type="chat", - ) - - second_prompt_client = langfuse.get_prompt("test_variable_names_4") - - assert prompt_client.name == second_prompt_client.name - assert prompt_client.version == second_prompt_client.version - assert prompt_client.prompt == second_prompt_client.prompt - assert prompt_client.labels == ["production", "latest"] - - var_names = second_prompt_client.variables - - assert var_names == [] diff --git a/tests/test_prompt_atexit.py b/tests/test_prompt_atexit.py deleted file mode 100644 index 87ba396e9..000000000 --- a/tests/test_prompt_atexit.py +++ /dev/null @@ -1,120 +0,0 @@ -import pytest -import subprocess - - -@pytest.mark.timeout(10) -def test_prompts_atexit(): - python_code = """ -import time -import logging -from langfuse.prompt_cache import PromptCache # assuming task_manager is the module name - -logging.basicConfig( - level=logging.DEBUG, - format="%(asctime)s [%(levelname)s] %(message)s", - handlers=[ - logging.StreamHandler() - ] -) - -print("Adding prompt cache", PromptCache) -prompt_cache = PromptCache(max_prompt_refresh_workers=10) - -# example task that takes 2 seconds but we will force it to exit earlier -def wait_2_sec(): - time.sleep(2) - -# 8 times -for i in range(8): - prompt_cache.add_refresh_prompt_task(f"key_wait_2_sec_i_{i}", lambda: wait_2_sec()) -""" - - process = subprocess.Popen( - ["python", "-c", python_code], stderr=subprocess.PIPE, text=True - ) - - logs = "" - - try: - for line in process.stderr: - logs += line.strip() - print(line.strip()) - except subprocess.TimeoutExpired: - pytest.fail("The process took too long to execute") - process.communicate() - - returncode = process.returncode - if returncode != 0: - pytest.fail("Process returned with error code") - - print(process.stderr) - - shutdown_count = logs.count("Shutdown of prompt refresh task manager completed.") - assert ( - shutdown_count == 1 - ), f"Expected 1 shutdown messages, but found {shutdown_count}" - - -@pytest.mark.timeout(10) -def test_prompts_atexit_async(): - python_code = """ -import time -import asyncio -import logging -from langfuse.prompt_cache import PromptCache # assuming task_manager is the module name - -logging.basicConfig( - level=logging.DEBUG, - format="%(asctime)s [%(levelname)s] %(message)s", - handlers=[ - logging.StreamHandler() - ] -) - -async def main(): - print("Adding prompt cache", PromptCache) - prompt_cache = PromptCache(max_prompt_refresh_workers=10) - - # example task that takes 2 seconds but we will force it to exit earlier - def wait_2_sec(): - time.sleep(2) - - async def add_new_prompt_refresh(i: int): - prompt_cache.add_refresh_prompt_task(f"key_wait_2_sec_i_{i}", lambda: wait_2_sec()) - - # 8 times - tasks = [add_new_prompt_refresh(i) for i in range(8)] - await asyncio.gather(*tasks) - -async def run_multiple_mains(): - main_tasks = [main() for _ in range(3)] - await asyncio.gather(*main_tasks) - -if __name__ == "__main__": - asyncio.run(run_multiple_mains()) -""" - - process = subprocess.Popen( - ["python", "-c", python_code], stderr=subprocess.PIPE, text=True - ) - - logs = "" - - try: - for line in process.stderr: - logs += line.strip() - print(line.strip()) - except subprocess.TimeoutExpired: - pytest.fail("The process took too long to execute") - process.communicate() - - returncode = process.returncode - if returncode != 0: - pytest.fail("Process returned with error code") - - print(process.stderr) - - shutdown_count = logs.count("Shutdown of prompt refresh task manager completed.") - assert ( - shutdown_count == 3 - ), f"Expected 3 shutdown messages, but found {shutdown_count}" diff --git a/tests/test_prompt_compilation.py b/tests/test_prompt_compilation.py deleted file mode 100644 index 856025717..000000000 --- a/tests/test_prompt_compilation.py +++ /dev/null @@ -1,183 +0,0 @@ -import pytest - -from langfuse.model import TemplateParser - - -def test_basic_replacement(): - template = "Hello, {{ name }}!" - expected = "Hello, John!" - - assert TemplateParser.compile_template(template, {"name": "John"}) == expected - - -def test_multiple_replacements(): - template = "{{greeting}}, {{name}}! Your balance is {{balance}}." - expected = "Hello, John! Your balance is $100." - - assert ( - TemplateParser.compile_template( - template, {"greeting": "Hello", "name": "John", "balance": "$100"} - ) - == expected - ) - - -def test_no_replacements(): - template = "This is a test." - expected = "This is a test." - - assert TemplateParser.compile_template(template) == expected - - -def test_content_as_variable_name(): - template = "This is a {{content}}." - expected = "This is a dog." - - assert TemplateParser.compile_template(template, {"content": "dog"}) == expected - - -def test_unmatched_opening_tag(): - template = "Hello, {{name! Your balance is $100." - expected = "Hello, {{name! Your balance is $100." - - assert TemplateParser.compile_template(template, {"name": "John"}) == expected - - -def test_unmatched_closing_tag(): - template = "Hello, {{name}}! Your balance is $100}}" - expected = "Hello, John! Your balance is $100}}" - - assert TemplateParser.compile_template(template, {"name": "John"}) == expected - - -def test_missing_variable(): - template = "Hello, {{name}}!" - expected = "Hello, {{name}}!" - - assert TemplateParser.compile_template(template) == expected - - -def test_none_variable(): - template = "Hello, {{name}}!" - expected = "Hello, !" - - assert TemplateParser.compile_template(template, {"name": None}) == expected - - -def test_strip_whitespace(): - template = "Hello, {{ name }}!" - expected = "Hello, John!" - - assert TemplateParser.compile_template(template, {"name": "John"}) == expected - - -def test_special_characters(): - template = "Symbols: {{symbol}}." - expected = "Symbols: @$%^&*." - - assert TemplateParser.compile_template(template, {"symbol": "@$%^&*"}) == expected - - -def test_multiple_templates_one_var(): - template = "{{a}} + {{a}} = {{b}}" - expected = "1 + 1 = 2" - - assert TemplateParser.compile_template(template, {"a": 1, "b": 2}) == expected - - -def test_unused_variable(): - template = "{{a}} + {{a}}" - expected = "1 + 1" - - assert TemplateParser.compile_template(template, {"a": 1, "b": 2}) == expected - - -def test_single_curly_braces(): - template = "{{a}} + {a} = {{b}" - expected = "1 + {a} = {{b}" - - assert TemplateParser.compile_template(template, {"a": 1, "b": 2}) == expected - - -def test_complex_json(): - template = """{{a}} + {{ - "key1": "val1", - "key2": "val2", - }}""" - expected = """1 + {{ - "key1": "val1", - "key2": "val2", - }}""" - - assert TemplateParser.compile_template(template, {"a": 1, "b": 2}) == expected - - -def test_replacement_with_empty_string(): - template = "Hello, {{name}}!" - expected = "Hello, !" - - assert TemplateParser.compile_template(template, {"name": ""}) == expected - - -def test_variable_case_sensitivity(): - template = "{{Name}} != {{name}}" - expected = "John != john" - - assert ( - TemplateParser.compile_template(template, {"Name": "John", "name": "john"}) - == expected - ) - - -def test_start_with_closing_braces(): - template = "}}" - expected = "}}" - - assert TemplateParser.compile_template(template, {"name": "john"}) == expected - - -def test_unescaped_JSON_variable_value(): - template = "{{some_json}}" - some_json = """ -{ - "user": { - "id": 12345, - "name": "John Doe", - "email": "john.doe@example.com", - "isActive": true, - "accountCreated": "2024-01-15T08:00:00Z", - "roles": [ - "user", - "admin" - ], - "preferences": { - "language": "en", - "notifications": { - "email": true, - "sms": false - } - }, - "address": { - "street": "123 Elm Street", - "city": "Anytown", - "state": "Anystate", - "zipCode": "12345", - "country": "USA" - } - } -}""" - - compiled = TemplateParser.compile_template(template, {"some_json": some_json}) - assert compiled == some_json - - -@pytest.mark.parametrize( - "template,data,expected", - [ - ("{{a}} + {{b}} = {{result}}", {"a": 1, "b": 2, "result": 3}, "1 + 2 = 3"), - ("{{x}}, {{y}}", {"x": "X", "y": "Y"}, "X, Y"), - ("No variables", {}, "No variables"), - ], -) -def test_various_templates(template, data, expected): - assert TemplateParser.compile_template(template, data) == expected diff --git a/tests/test_sampler.py b/tests/test_sampler.py deleted file mode 100644 index eb67f1e36..000000000 --- a/tests/test_sampler.py +++ /dev/null @@ -1,88 +0,0 @@ -import unittest -from langfuse.Sampler import Sampler - - -class TestSampler(unittest.TestCase): - def setUp(self): - self.sampler = Sampler(sample_rate=0.5) - - def test_sample_event_trace_create(self): - event = {"type": "trace-create", "body": {"id": "trace_123"}} - result = self.sampler.sample_event(event) - self.assertIsInstance(result, bool) - - event = { - "type": "trace-create", - "body": {"id": "trace_123", "something": "else"}, - } - result_two = self.sampler.sample_event(event) - self.assertIsInstance(result, bool) - - assert result == result_two - - def test_multiple_events_of_different_types(self): - event = {"type": "trace-create", "body": {"id": "trace_123"}} - - result = self.sampler.sample_event(event) - self.assertIsInstance(result, bool) - - event = {"type": "generation-create", "body": {"trace_id": "trace_123"}} - result_two = self.sampler.sample_event(event) - self.assertIsInstance(result, bool) - - event = event = {"type": "score-create", "body": {"trace_id": "trace_123"}} - result_three = self.sampler.sample_event(event) - self.assertIsInstance(result, bool) - - event = {"type": "generation-update", "body": {"traceId": "trace_123"}} - result_four = self.sampler.sample_event(event) - self.assertIsInstance(result, bool) - - assert result == result_two == result_three == result_four - - def test_sample_event_trace_id(self): - event = {"type": "some-other-type", "body": {"trace_id": "trace_456"}} - result = self.sampler.sample_event(event) - self.assertIsInstance(result, bool) - - def test_sample_event_unexpected_properties(self): - event = {"type": "some-type", "body": {}} - result = self.sampler.sample_event(event) - self.assertTrue(result) - - def test_deterministic_sample(self): - trace_id = "trace_789" - result = self.sampler.deterministic_sample(trace_id, 0.5) - self.assertIsInstance(result, bool) - - def test_deterministic_sample_high_rate(self): - trace_id = "trace_789" - result = self.sampler.deterministic_sample(trace_id, 1.0) - self.assertTrue(result) - - def test_deterministic_sample_low_rate(self): - trace_id = "trace_789" - result = self.sampler.deterministic_sample(trace_id, 0.0) - self.assertFalse(result) - - def test_deterministic_sample_50_percent_rate(self): - trace_ids = [f"trace_{i}" for i in range(1000)] - sampled_count = sum( - self.sampler.deterministic_sample(trace_id, 0.5) for trace_id in trace_ids - ) - print(sampled_count) - self.assertTrue( - 450 <= sampled_count <= 550, - f"Sampled count {sampled_count} is not within the expected range", - ) - - def test_deterministic_sample_10_percent_rate(self): - trace_ids = [f"trace_{i}" for i in range(1000)] - sampled_count = sum( - self.sampler.deterministic_sample(trace_id, 0.1) for trace_id in trace_ids - ) - print(sampled_count) - self.assertTrue( - 90 <= sampled_count <= 110, - f"Sampled count {sampled_count} is not within the expected range", - ) diff --git a/tests/test_sdk_setup.py b/tests/test_sdk_setup.py deleted file mode 100644 index cca83929e..000000000 --- a/tests/test_sdk_setup.py +++ /dev/null @@ -1,516 +0,0 @@ -import importlib -import logging -import os - -import httpx -import pytest -from pytest_httpserver import HTTPServer -from werkzeug import Response - -import langfuse -from langfuse.api.resources.commons.errors.unauthorized_error import UnauthorizedError -from langfuse.callback import CallbackHandler -from langfuse.client import Langfuse -from langfuse.openai import _is_openai_v1, auth_check, openai -from langfuse.utils.langfuse_singleton import LangfuseSingleton -from tests.test_task_manager import get_host - -chat_func = ( - openai.chat.completions.create if _is_openai_v1() else openai.ChatCompletion.create -) - - -def test_langfuse_release(): - # Backup environment variables to restore them later - backup_environ = os.environ.copy() - - # Clearing the environment variables - os.environ.clear() - - # These key are required - client = Langfuse(public_key="test", secret_key="test") - assert client.release is None - - # If neither the LANGFUSE_RELEASE env var nor the release parameter is given, - # it should fall back to get_common_release_envs - os.environ["CIRCLE_SHA1"] = "mock-sha1" - client = Langfuse(public_key="test", secret_key="test") - assert client.release == "mock-sha1" - - # If LANGFUSE_RELEASE env var is set, it should take precedence - os.environ["LANGFUSE_RELEASE"] = "mock-langfuse-release" - client = Langfuse(public_key="test", secret_key="test") - assert client.release == "mock-langfuse-release" - - # If the release parameter is given during initialization, it should take the highest precedence - client = Langfuse(public_key="test", secret_key="test", release="parameter-release") - assert client.release == "parameter-release" - - # Restoring the environment variables - os.environ.update(backup_environ) - - -# langfuse sdk -def test_setup_without_any_keys(caplog): - public_key, secret_key, host = ( - os.environ["LANGFUSE_PUBLIC_KEY"], - os.environ["LANGFUSE_SECRET_KEY"], - os.environ["LANGFUSE_HOST"], - ) - os.environ.pop("LANGFUSE_PUBLIC_KEY") - os.environ.pop("LANGFUSE_SECRET_KEY") - os.environ.pop("LANGFUSE_HOST") - - with caplog.at_level(logging.WARNING): - Langfuse() - - assert "Langfuse client is disabled" in caplog.text - - os.environ["LANGFUSE_PUBLIC_KEY"] = public_key - os.environ["LANGFUSE_SECRET_KEY"] = secret_key - os.environ["LANGFUSE_HOST"] = host - - -def test_setup_without_pk(caplog): - public_key = os.environ["LANGFUSE_PUBLIC_KEY"] - os.environ.pop("LANGFUSE_PUBLIC_KEY") - with caplog.at_level(logging.WARNING): - Langfuse() - - assert "Langfuse client is disabled" in caplog.text - os.environ["LANGFUSE_PUBLIC_KEY"] = public_key - - -def test_setup_without_sk(caplog): - secret_key = os.environ["LANGFUSE_SECRET_KEY"] - os.environ.pop("LANGFUSE_SECRET_KEY") - with caplog.at_level(logging.WARNING): - Langfuse() - - assert "Langfuse client is disabled" in caplog.text - os.environ["LANGFUSE_SECRET_KEY"] = secret_key - - -def test_init_precedence_pk(): - langfuse = Langfuse(public_key="test_LANGFUSE_PUBLIC_KEY") - assert ( - langfuse.client._client_wrapper._x_langfuse_public_key - == "test_LANGFUSE_PUBLIC_KEY" - ) - assert langfuse.client._client_wrapper._username == "test_LANGFUSE_PUBLIC_KEY" - - -def test_init_precedence_sk(): - langfuse = Langfuse(secret_key="test_LANGFUSE_SECRET_KEY") - assert langfuse.client._client_wrapper._password == "test_LANGFUSE_SECRET_KEY" - - -def test_init_precedence_env(): - langfuse = Langfuse(host="http://localhost:8000/") - assert langfuse.client._client_wrapper._base_url == "http://localhost:8000/" - - -def test_sdk_default_host(): - _, _, host = get_env_variables() - os.environ.pop("LANGFUSE_HOST") - - langfuse = Langfuse() - assert langfuse.base_url == "https://cloud.langfuse.com" - os.environ["LANGFUSE_HOST"] = host - - -def test_sdk_default(): - public_key, secret_key, host = get_env_variables() - - langfuse = Langfuse() - - assert langfuse.client._client_wrapper._username == public_key - assert langfuse.client._client_wrapper._password == secret_key - assert langfuse.client._client_wrapper._base_url == host - assert langfuse.task_manager._threads == 1 - assert langfuse.task_manager._flush_at == 15 - assert langfuse.task_manager._flush_interval == 0.5 - assert langfuse.task_manager._max_retries == 3 - assert langfuse.task_manager._client._timeout == 20 - - -def test_sdk_custom_configs(): - public_key, secret_key, host = get_env_variables() - - langfuse = Langfuse( - threads=3, - flush_at=3, - flush_interval=3, - max_retries=3, - timeout=3, - ) - - assert langfuse.client._client_wrapper._username == public_key - assert langfuse.client._client_wrapper._password == secret_key - assert langfuse.client._client_wrapper._base_url == host - assert langfuse.task_manager._threads == 3 - assert langfuse.task_manager._flush_at == 3 - assert langfuse.task_manager._flush_interval == 3 - assert langfuse.task_manager._max_retries == 3 - assert langfuse.task_manager._client._timeout == 3 - - -def test_sdk_custom_xhttp_client(): - public_key, secret_key, host = get_env_variables() - - client = httpx.Client(timeout=9999) - - langfuse = Langfuse(httpx_client=client) - - langfuse.auth_check() - - assert langfuse.client._client_wrapper._username == public_key - assert langfuse.client._client_wrapper._password == secret_key - assert langfuse.client._client_wrapper._base_url == host - assert langfuse.task_manager._client._session._timeout.as_dict() == { - "connect": 9999, - "pool": 9999, - "read": 9999, - "write": 9999, - } - assert ( - langfuse.client._client_wrapper.httpx_client.httpx_client._timeout.as_dict() - == { - "connect": 9999, - "pool": 9999, - "read": 9999, - "write": 9999, - } - ) - - -# callback -def test_callback_setup_without_keys(caplog): - public_key, secret_key, host = get_env_variables() - os.environ.pop("LANGFUSE_PUBLIC_KEY") - os.environ.pop("LANGFUSE_SECRET_KEY") - os.environ.pop("LANGFUSE_HOST") - - with caplog.at_level(logging.WARNING): - CallbackHandler() - - assert "Langfuse client is disabled" in caplog.text - - os.environ["LANGFUSE_PUBLIC_KEY"] = public_key - os.environ["LANGFUSE_SECRET_KEY"] = secret_key - os.environ["LANGFUSE_HOST"] = host - - -def test_callback_default_host(): - _, _, host = get_env_variables() - os.environ.pop("LANGFUSE_HOST") - - handler = CallbackHandler(debug=False) - assert ( - handler.langfuse.client._client_wrapper._base_url - == "https://cloud.langfuse.com" - ) - os.environ["LANGFUSE_HOST"] = host - - -def test_callback_sampling(): - os.environ["LANGFUSE_SAMPLE_RATE"] = "0.2" - - handler = CallbackHandler() - assert handler.langfuse.task_manager._sample_rate == 0.2 - - os.environ.pop("LANGFUSE_SAMPLE_RATE") - - -def test_callback_setup(): - public_key, secret_key, host = get_env_variables() - - callback_handler = CallbackHandler() - - assert callback_handler.langfuse.client._client_wrapper._username == public_key - assert callback_handler.langfuse.client._client_wrapper._base_url == host - assert callback_handler.langfuse.client._client_wrapper._password == secret_key - - -def test_callback_setup_without_pk(caplog): - public_key = os.environ["LANGFUSE_PUBLIC_KEY"] - os.environ.pop("LANGFUSE_PUBLIC_KEY") - - with caplog.at_level(logging.WARNING): - CallbackHandler() - - assert "Langfuse client is disabled" in caplog.text - - os.environ["LANGFUSE_PUBLIC_KEY"] = public_key - - -def test_callback_setup_without_sk(caplog): - secret_key = os.environ["LANGFUSE_SECRET_KEY"] - os.environ.pop("LANGFUSE_SECRET_KEY") - - with caplog.at_level(logging.WARNING): - CallbackHandler() - - assert "Langfuse client is disabled" in caplog.text - - os.environ["LANGFUSE_SECRET_KEY"] = secret_key - - -def test_callback_init_precedence_pk(): - handler = CallbackHandler(public_key="test_LANGFUSE_PUBLIC_KEY") - assert ( - handler.langfuse.client._client_wrapper._x_langfuse_public_key - == "test_LANGFUSE_PUBLIC_KEY" - ) - assert ( - handler.langfuse.client._client_wrapper._username == "test_LANGFUSE_PUBLIC_KEY" - ) - - -def test_callback_init_precedence_sk(): - handler = CallbackHandler(secret_key="test_LANGFUSE_SECRET_KEY") - assert ( - handler.langfuse.client._client_wrapper._password == "test_LANGFUSE_SECRET_KEY" - ) - - -def test_callback_init_precedence_host(): - handler = CallbackHandler(host="http://localhost:8000/") - assert handler.langfuse.client._client_wrapper._base_url == "http://localhost:8000/" - - -def test_callback_init_workers(): - handler = CallbackHandler() - assert handler.langfuse.task_manager._threads == 1 - - -def test_callback_init_workers_5(): - handler = CallbackHandler(threads=5) - assert handler.langfuse.task_manager._threads == 5 - - -def test_client_init_workers(): - langfuse = Langfuse() - assert langfuse.task_manager._threads == 1 - - -def test_openai_default(): - from langfuse.openai import modifier, openai - - importlib.reload(langfuse) - importlib.reload(langfuse.openai) - - chat_func = ( - openai.chat.completions.create - if _is_openai_v1() - else openai.ChatCompletion.create - ) - - public_key, secret_key, host = ( - os.environ["LANGFUSE_PUBLIC_KEY"], - os.environ["LANGFUSE_SECRET_KEY"], - os.environ["LANGFUSE_HOST"], - ) - - chat_func( - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - assert modifier._langfuse.client._client_wrapper._username == public_key - assert modifier._langfuse.client._client_wrapper._password == secret_key - assert modifier._langfuse.client._client_wrapper._base_url == host - - os.environ["LANGFUSE_PUBLIC_KEY"] = public_key - os.environ["LANGFUSE_SECRET_KEY"] = secret_key - os.environ["LANGFUSE_HOST"] = host - - -def test_openai_configs(): - from langfuse.openai import modifier, openai - - importlib.reload(langfuse) - importlib.reload(langfuse.openai) - - chat_func = ( - openai.chat.completions.create - if _is_openai_v1() - else openai.ChatCompletion.create - ) - - openai.base_url = "http://localhost:8000/" - - public_key, secret_key, host = ( - os.environ["LANGFUSE_PUBLIC_KEY"], - os.environ["LANGFUSE_SECRET_KEY"], - os.environ["LANGFUSE_HOST"], - ) - - with pytest.raises(openai.APIConnectionError): - chat_func( - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - - openai.flush_langfuse() - assert modifier._langfuse.client._client_wrapper._username == public_key - assert modifier._langfuse.client._client_wrapper._password == secret_key - assert modifier._langfuse.client._client_wrapper._base_url == host - - os.environ["LANGFUSE_PUBLIC_KEY"] = public_key - os.environ["LANGFUSE_SECRET_KEY"] = secret_key - os.environ["LANGFUSE_HOST"] = host - openai.base_url = None - - -def test_openai_auth_check(): - assert auth_check() is True - - -def test_openai_auth_check_failing_key(): - LangfuseSingleton().reset() - - secret_key = os.environ["LANGFUSE_SECRET_KEY"] - os.environ.pop("LANGFUSE_SECRET_KEY") - - importlib.reload(langfuse) - importlib.reload(langfuse.openai) - - from langfuse.openai import openai - - openai.langfuse_secret_key = "test" - - with pytest.raises(UnauthorizedError): - auth_check() - - os.environ["LANGFUSE_SECRET_KEY"] = secret_key - - -def test_openai_configured(httpserver: HTTPServer): - LangfuseSingleton().reset() - - httpserver.expect_request( - "/api/public/ingestion", method="POST" - ).respond_with_response(Response(status=200)) - host = get_host(httpserver.url_for("/api/public/ingestion")) - - importlib.reload(langfuse) - importlib.reload(langfuse.openai) - from langfuse.openai import modifier, openai - - chat_func = ( - openai.chat.completions.create - if _is_openai_v1() - else openai.ChatCompletion.create - ) - - public_key, secret_key, original_host = ( - os.environ["LANGFUSE_PUBLIC_KEY"], - os.environ["LANGFUSE_SECRET_KEY"], - os.environ["LANGFUSE_HOST"], - ) - - os.environ.pop("LANGFUSE_PUBLIC_KEY") - os.environ.pop("LANGFUSE_SECRET_KEY") - os.environ.pop("LANGFUSE_HOST") - - openai.langfuse_public_key = "pk-lf-asdfghjkl" - openai.langfuse_secret_key = "sk-lf-asdfghjkl" - openai.langfuse_host = host - openai.langfuse_sample_rate = 0.2 - - chat_func( - model="gpt-3.5-turbo", - messages=[{"role": "user", "content": "1 + 1 = "}], - temperature=0, - metadata={"someKey": "someResponse"}, - ) - openai.flush_langfuse() - - assert modifier._langfuse.client._client_wrapper._username == "pk-lf-asdfghjkl" - assert modifier._langfuse.client._client_wrapper._password == "sk-lf-asdfghjkl" - assert modifier._langfuse.client._client_wrapper._base_url == host - assert modifier._langfuse.task_manager._client._base_url == host - assert modifier._langfuse.task_manager._sample_rate == 0.2 - - os.environ["LANGFUSE_PUBLIC_KEY"] = public_key - os.environ["LANGFUSE_SECRET_KEY"] = secret_key - os.environ["LANGFUSE_HOST"] = original_host - - -def test_client_init_workers_5(): - langfuse = Langfuse(threads=5) - langfuse.flush() - - assert langfuse.task_manager._threads == 5 - - -def get_env_variables(): - return ( - os.environ["LANGFUSE_PUBLIC_KEY"], - os.environ["LANGFUSE_SECRET_KEY"], - os.environ["LANGFUSE_HOST"], - ) - - -def test_auth_check(): - langfuse = Langfuse(debug=False) - - assert langfuse.auth_check() is True - - langfuse.flush() - - -def test_wrong_key_auth_check(): - langfuse = Langfuse(debug=False, secret_key="test") - - with pytest.raises(UnauthorizedError): - langfuse.auth_check() - - langfuse.flush() - - -def test_auth_check_callback(): - langfuse = CallbackHandler(debug=False) - - assert langfuse.auth_check() is True - langfuse.flush() - - -def test_auth_check_callback_stateful(): - langfuse = Langfuse(debug=False) - trace = langfuse.trace(name="name") - handler = trace.get_langchain_handler() - - assert handler.auth_check() is True - handler.flush() - - -def test_wrong_key_auth_check_callback(): - langfuse = CallbackHandler(debug=False, secret_key="test") - - with pytest.raises(UnauthorizedError): - langfuse.auth_check() - langfuse.flush() - - -def test_wrong_url_auth_check(): - langfuse = Langfuse(debug=False, host="http://localhost:4000/") - - with pytest.raises(httpx.ConnectError): - langfuse.auth_check() - - langfuse.flush() - - -def test_wrong_url_auth_check_callback(): - langfuse = CallbackHandler(debug=False, host="http://localhost:4000/") - - with pytest.raises(httpx.ConnectError): - langfuse.auth_check() - langfuse.flush() diff --git a/tests/test_serializer.py b/tests/test_serializer.py deleted file mode 100644 index e01561530..000000000 --- a/tests/test_serializer.py +++ /dev/null @@ -1,191 +0,0 @@ -from datetime import datetime, date, timezone -from uuid import UUID -from enum import Enum -from dataclasses import dataclass -from pathlib import Path -from pydantic import BaseModel -import json -import pytest -import threading -import langfuse.serializer -from langfuse.serializer import ( - EventSerializer, -) - - -class TestEnum(Enum): - A = 1 - B = 2 - - -@dataclass -class TestDataclass: - field: str - - -class TestBaseModel(BaseModel): - field: str - - -def test_datetime(): - dt = datetime(2023, 1, 1, 12, 0, 0, tzinfo=timezone.utc) - serializer = EventSerializer() - - assert serializer.encode(dt) == '"2023-01-01T12:00:00Z"' - - -def test_date(): - d = date(2023, 1, 1) - serializer = EventSerializer() - assert serializer.encode(d) == '"2023-01-01"' - - -def test_enum(): - serializer = EventSerializer() - assert serializer.encode(TestEnum.A) == "1" - - -def test_uuid(): - uuid = UUID("123e4567-e89b-12d3-a456-426614174000") - serializer = EventSerializer() - assert serializer.encode(uuid) == '"123e4567-e89b-12d3-a456-426614174000"' - - -def test_bytes(): - b = b"hello" - serializer = EventSerializer() - assert serializer.encode(b) == '"hello"' - - -def test_dataclass(): - dc = TestDataclass(field="test") - serializer = EventSerializer() - assert json.loads(serializer.encode(dc)) == {"field": "test"} - - -def test_pydantic_model(): - model = TestBaseModel(field="test") - serializer = EventSerializer() - assert json.loads(serializer.encode(model)) == {"field": "test"} - - -def test_path(): - path = Path("/tmp/test.txt") - serializer = EventSerializer() - assert serializer.encode(path) == '"/tmp/test.txt"' - - -def test_tuple_set_frozenset(): - data = (1, 2, 3) - serializer = EventSerializer() - assert serializer.encode(data) == "[1, 2, 3]" - - data = {1, 2, 3} - assert serializer.encode(data) == "[1, 2, 3]" - - data = frozenset([1, 2, 3]) - assert json.loads(serializer.encode(data)) == [1, 2, 3] - - -def test_dict(): - data = {"a": 1, "b": "two"} - serializer = EventSerializer() - - assert json.loads(serializer.encode(data)) == data - - -def test_list(): - data = [1, "two", 3.0] - serializer = EventSerializer() - - assert json.loads(serializer.encode(data)) == data - - -def test_nested_structures(): - data = {"list": [1, 2, 3], "dict": {"a": 1, "b": 2}, "tuple": (4, 5, 6)} - serializer = EventSerializer() - - assert json.loads(serializer.encode(data)) == { - "list": [1, 2, 3], - "dict": {"a": 1, "b": 2}, - "tuple": [4, 5, 6], - } - - -def test_custom_object(): - class CustomObject: - def __init__(self): - self.field = "value" - - obj = CustomObject() - serializer = EventSerializer() - - assert json.loads(serializer.encode(obj)) == {"field": "value"} - - -def test_circular_reference(): - class Node: - def __init__(self): - self.next = None - - node1 = Node() - node2 = Node() - node1.next = node2 - node2.next = node1 - - serializer = EventSerializer() - result = json.loads(serializer.encode(node1)) - - assert result == {"next": {"next": "Node"}} - - -def test_not_serializable(): - class NotSerializable: - def __init__(self): - self.lock = threading.Lock() - - def __repr__(self): - raise Exception("Cannot represent") - - obj = NotSerializable() - serializer = EventSerializer() - - assert serializer.encode(obj) == '{"lock": ""}' - - -def test_exception(): - ex = ValueError("Test exception") - serializer = EventSerializer() - assert serializer.encode(ex) == '"ValueError: Test exception"' - - -def test_none(): - serializer = EventSerializer() - assert serializer.encode(None) == "null" - - -def test_none_without_langchain(monkeypatch: pytest.MonkeyPatch): - monkeypatch.setattr(langfuse.serializer, "Serializable", type(None), raising=True) - serializer = EventSerializer() - assert serializer.encode(None) == "null" - - -def test_slots(): - class SlotClass: - __slots__ = ["field"] - - def __init__(self): - self.field = "value" - - obj = SlotClass() - serializer = EventSerializer() - assert json.loads(serializer.encode(obj)) == {"field": "value"} - - -def test_numpy_float32(): - import numpy as np - - data = np.float32(1.0) - serializer = EventSerializer() - - assert serializer.encode(data) == "1.0" diff --git a/tests/test_singleton.py b/tests/test_singleton.py deleted file mode 100644 index c54c86f79..000000000 --- a/tests/test_singleton.py +++ /dev/null @@ -1,69 +0,0 @@ -import threading -from unittest.mock import patch - -import pytest - -from langfuse.utils.langfuse_singleton import LangfuseSingleton - - -@pytest.fixture(autouse=True) -def reset_singleton(): - LangfuseSingleton._instance = None - LangfuseSingleton._langfuse = None - yield - LangfuseSingleton._instance = None - LangfuseSingleton._langfuse = None - - -def test_singleton_instance(): - """Test that the LangfuseSingleton class truly implements singleton behavior.""" - instance1 = LangfuseSingleton() - instance2 = LangfuseSingleton() - - assert instance1 is instance2 - - -def test_singleton_thread_safety(): - """Test the thread safety of the LangfuseSingleton class.""" - - def get_instance(results): - instance = LangfuseSingleton() - results.append(instance) - - results = [] - threads = [ - threading.Thread(target=get_instance, args=(results,)) for _ in range(10) - ] - - for thread in threads: - thread.start() - for thread in threads: - thread.join() - - for instance in results: - assert instance is results[0] - - -@patch("langfuse.utils.langfuse_singleton.Langfuse") -def test_langfuse_initialization(mock_langfuse): - instance = LangfuseSingleton() - created = instance.get(public_key="key123", secret_key="secret", debug=True) - mock_langfuse.assert_called_once_with( - public_key="key123", - secret_key="secret", - debug=True, - ) - - assert created is mock_langfuse.return_value - - -@patch("langfuse.utils.langfuse_singleton.Langfuse") -def test_reset_functionality(mock_langfuse): - """Test the reset functionality of the LangfuseSingleton.""" - instance = LangfuseSingleton() - instance.get(public_key="key123") - instance.reset() - - assert instance._langfuse is None - - mock_langfuse.return_value.shutdown.assert_called_once() diff --git a/tests/test_task_manager.py b/tests/test_task_manager.py deleted file mode 100644 index 373493670..000000000 --- a/tests/test_task_manager.py +++ /dev/null @@ -1,639 +0,0 @@ -import logging -import subprocess -import threading -from urllib.parse import urlparse, urlunparse - -import httpx -import pytest -from pytest_httpserver import HTTPServer -from werkzeug.wrappers import Request, Response - -from langfuse._task_manager.task_manager import TaskManager -from langfuse.request import LangfuseClient - -logging.basicConfig() -log = logging.getLogger("langfuse") -log.setLevel(logging.DEBUG) - - -def setup_server(httpserver, expected_body: dict): - httpserver.expect_request( - "/api/public/ingestion", method="POST", json=expected_body - ).respond_with_data("success") - - -def setup_langfuse_client(server: str): - return LangfuseClient( - "public_key", "secret_key", server, "1.0.0", 15, httpx.Client() - ) - - -def get_host(url): - parsed_url = urlparse(url) - new_url = urlunparse((parsed_url.scheme, parsed_url.netloc, "", "", "", "")) - return new_url - - -@pytest.mark.timeout(10) -def test_multiple_tasks_without_predecessor(httpserver: HTTPServer): - failed = False - - def handler(request: Request): - try: - if request.json["batch"][0]["foo"] == "bar": - return Response(status=200) - return Response(status=500) - except Exception as e: - print(e) - logging.error(e) - nonlocal failed - failed = True - - httpserver.expect_request( - "/api/public/ingestion", method="POST" - ).respond_with_handler(handler) - - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=10, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - - tm.add_task({"foo": "bar"}) - tm.add_task({"foo": "bar"}) - tm.add_task({"foo": "bar"}) - - tm.flush() - assert not failed - - -@pytest.mark.timeout(10) -def test_disabled_task_manager(httpserver: HTTPServer): - request_fired = False - - def handler(request: Request): - nonlocal request_fired - request_fired = True - try: - if request.json["batch"][0]["foo"] == "bar": - return Response(status=200) - return Response(status=500) - except Exception as e: - print(e) - logging.error(e) - - httpserver.expect_request( - "/api/public/ingestion", method="POST" - ).respond_with_handler(handler) - - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=10, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - enabled=False, - ) - - tm.add_task({"foo": "bar"}) - tm.add_task({"foo": "bar"}) - tm.add_task({"foo": "bar"}) - - assert tm._ingestion_queue.empty() - - tm.flush() - assert not request_fired - - -@pytest.mark.timeout(10) -def test_task_manager_fail(httpserver: HTTPServer): - count = 0 - - def handler(request: Request): - nonlocal count - count = count + 1 - return Response(status=500) - - httpserver.expect_request( - "/api/public/ingestion", method="POST" - ).respond_with_handler(handler) - - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=10, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - - tm.add_task({"type": "bar", "body": {"trace_id": "trace_123"}}) - tm.flush() - - assert count == 3 - - -@pytest.mark.timeout(20) -def test_consumer_restart(httpserver: HTTPServer): - failed = False - - def handler(request: Request): - try: - if request.json["batch"][0]["foo"] == "bar": - return Response(status=200) - return Response(status=500) - except Exception as e: - print(e) - logging.error(e) - nonlocal failed - failed = True - - httpserver.expect_request( - "/api/public/ingestion", method="POST" - ).respond_with_handler(handler) - - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=10, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - - tm.add_task({"foo": "bar"}) - tm.flush() - - tm.add_task({"foo": "bar"}) - tm.flush() - assert not failed - - -@pytest.mark.timeout(10) -def test_concurrent_task_additions(httpserver: HTTPServer): - counter = 0 - - def handler(request: Request): - nonlocal counter - counter = counter + 1 - return Response(status=200) - - def add_task_concurrently(tm, func): - tm.add_task(func) - - httpserver.expect_request( - "/api/public/ingestion", method="POST" - ).respond_with_handler(handler) - - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=1, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - threads = [ - threading.Thread( - target=add_task_concurrently, - args=(tm, {"type": "bar", "body": {"trace_id": "trace_123"}}), - ) - for i in range(10) - ] - for t in threads: - t.start() - for t in threads: - t.join() - - tm.shutdown() - - assert counter == 10 - - -@pytest.mark.timeout(10) -def test_atexit(): - python_code = """ -import time -import logging -from langfuse._task_manager.task_manager import TaskManager -from langfuse.request import LangfuseClient -import httpx - -langfuse_client = LangfuseClient("public_key", "secret_key", "http://localhost:3000", "1.0.0", 15, httpx.Client()) - -logging.basicConfig( - level=logging.DEBUG, - format="%(asctime)s [%(levelname)s] %(message)s", - handlers=[ - logging.StreamHandler() - ] -) -print("Adding task manager", TaskManager) -manager = TaskManager(client=langfuse_client, api_client=None, public_key='pk', flush_at=10, flush_interval=0.1, max_retries=3, threads=1, max_task_queue_size=10_000, sdk_name="test-sdk", sdk_version="1.0.0", sdk_integration="default") - -""" - - process = subprocess.Popen( - ["python", "-c", python_code], stderr=subprocess.PIPE, text=True - ) - - logs = "" - - try: - for line in process.stderr: - logs += line.strip() - print(line.strip()) - except subprocess.TimeoutExpired: - pytest.fail("The process took too long to execute") - process.communicate() - - returncode = process.returncode - if returncode != 0: - pytest.fail("Process returned with error code") - - print(process.stderr) - - assert "MediaUploadConsumer thread 0 joined" in logs - assert "IngestionConsumer thread 0 joined" in logs - - -def test_flush(httpserver: HTTPServer): - # set up the consumer with more requests than a single batch will allow - - failed = False - - def handler(request: Request): - try: - if request.json["batch"][0]["foo"] == "bar": - return Response(status=200) - return Response(status=500) - except Exception as e: - print(e) - logging.error(e) - nonlocal failed - failed = True - - httpserver.expect_request( - "/api/public/ingestion", - method="POST", - ).respond_with_handler(handler) - - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=1, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - - for _ in range(100): - tm.add_task({"foo": "bar"}) - # We can't reliably assert that the queue is non-empty here; that's - # a race condition. We do our best to load it up though. - tm.flush() - # Make sure that the client queue is empty after flushing - assert tm._ingestion_queue.empty() - assert not failed - - -def test_shutdown(httpserver: HTTPServer): - # set up the consumer with more requests than a single batch will allow - - failed = False - - def handler(request: Request): - try: - if request.json["batch"][0]["foo"] == "bar": - return Response(status=200) - return Response(status=500) - except Exception as e: - print(e) - logging.error(e) - nonlocal failed - failed = True - - httpserver.expect_request( - "/api/public/ingestion", - method="POST", - ).respond_with_handler(handler) - - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=1, - flush_interval=0.1, - max_retries=3, - threads=5, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - - for _ in range(100): - tm.add_task({"foo": "bar"}) - - tm.shutdown() - # we expect two things after shutdown: - # 1. client queue is empty - # 2. consumer thread has stopped - assert tm._ingestion_queue.empty() - - assert len(tm._ingestion_consumers) == 5 - for c in tm._ingestion_consumers: - assert not c.is_alive() - assert tm._ingestion_queue.empty() - assert not failed - - -def test_large_events_dropped_if_random(httpserver: HTTPServer): - failed = False - - def handler(request: Request): - try: - if request.json["batch"][0]["foo"] == "bar": - return Response(status=200) - return Response(status=500) - except Exception as e: - print(e) - logging.error(e) - nonlocal failed - failed = True - - httpserver.expect_request( - "/api/public/ingestion", - method="POST", - ).respond_with_handler(handler) - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=1, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - - tm.add_task({"foo": "bar"}) - # create task with extremely long string for bar - long_string = "a" * 100_000 # 100,000 characters of 'a' - tm.add_task({"foo": long_string}) - - # We can't reliably assert that the queue is non-empty here; that's - # a race condition. We do our best to load it up though. - tm.flush() - # Make sure that the client queue is empty after flushing - assert tm._ingestion_queue.empty() - assert not failed - - -def test_large_events_i_o_dropped(httpserver: HTTPServer): - failed = False - count = 0 - - def handler(request: Request): - try: - nonlocal count - count += 1 - log.info(f"count {count}") - return Response(status=200) - except Exception as e: - print(e) - logging.error(e) - nonlocal failed - failed = True - - httpserver.expect_request( - "/api/public/ingestion", - method="POST", - ).respond_with_handler(handler) - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=1, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=10_000, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - - tm.add_task({"type": "bar", "body": {"trace_id": "trace_123"}}) - # create task with extremely long string for bar - long_string = "a" * 1_000_000 - tm.add_task( - { - "body": {"input": long_string, "trace_id": "trace_123"}, - "type": "bar", - } - ) - - # We can't reliably assert that the queue is non-empty here; that's - # a race condition. We do our best to load it up though. - tm.flush() - # Make sure that the client queue is empty after flushing - assert tm._ingestion_queue.empty() - assert not failed - assert count == 2 - - -def test_truncate_item_in_place(httpserver): - langfuse_client = setup_langfuse_client( - get_host(httpserver.url_for("/api/public/ingestion")) - ) - - tm = TaskManager( - client=langfuse_client, - api_client=None, - public_key="pk", - flush_at=10, - flush_interval=0.1, - max_retries=3, - threads=1, - max_task_queue_size=100, - sdk_name="test-sdk", - sdk_version="1.0.0", - sdk_integration="default", - ) - - consumer = tm._ingestion_consumers[0] - - # Item size within limit - MAX_MSG_SIZE = 100 - - small_item = {"body": {"input": "small"}} - assert ( - consumer._truncate_item_in_place(event=small_item, max_size=MAX_MSG_SIZE) - <= MAX_MSG_SIZE - ) - assert small_item["body"]["input"] == "small" # unchanged - - # Item size exceeding limit - large_item = {"body": {"input": "a" * (MAX_MSG_SIZE + 10)}} - truncated_size = consumer._truncate_item_in_place( - event=large_item, max_size=MAX_MSG_SIZE - ) - - assert truncated_size <= MAX_MSG_SIZE - assert large_item["body"]["input"] is None # truncated - - # Logs message if item is truncated - large_item = {"body": {"input": "a" * (MAX_MSG_SIZE + 10)}} - truncated_size = consumer._truncate_item_in_place( - event=large_item, max_size=MAX_MSG_SIZE, log_message="truncated" - ) - - assert truncated_size <= MAX_MSG_SIZE - assert large_item["body"]["input"] == "truncated" # truncated - - # Multiple fields - full_item = { - "body": { - "input": "a" * 300, - "output": "b" * 300, - "metadata": "c" * 300, - } - } - truncated_size = consumer._truncate_item_in_place( - event=full_item, max_size=MAX_MSG_SIZE - ) - - assert truncated_size <= MAX_MSG_SIZE - assert any( - full_item["body"][field] is None for field in ["input", "output", "metadata"] - ) # all truncated - - # Field sizes - input_largest = { - "body": { - "input": "a" * 500, - "output": "b" * 10, - "metadata": "c" * 10, - } - } - consumer._truncate_item_in_place(event=input_largest, max_size=MAX_MSG_SIZE) - assert input_largest["body"]["input"] is None - assert input_largest["body"]["output"] is not None - assert input_largest["body"]["metadata"] is not None - - # Truncation order - mixed_size = { - "body": { - "input": "a" * 20, - "output": "b" * 200, - "metadata": "c" * 20, - } - } - consumer._truncate_item_in_place(event=mixed_size, max_size=MAX_MSG_SIZE) - assert mixed_size["body"]["input"] is not None - assert mixed_size["body"]["output"] is None - assert mixed_size["body"]["metadata"] is not None - - # Multiple field drops - very_large = { - "body": { - "input": "a" * 100, - "output": "b" * 120, - "metadata": "c" * 50, - } - } - consumer._truncate_item_in_place(event=very_large, max_size=MAX_MSG_SIZE) - assert very_large["body"]["input"] is None - assert very_large["body"]["output"] is None - assert very_large["body"]["metadata"] is not None - - # Return value - assert isinstance( - consumer._truncate_item_in_place(event=small_item, max_size=MAX_MSG_SIZE), int - ) - - # JSON serialization - complex_item = { - "body": { - "input": {"nested": ["complex", {"structure": "a" * (MAX_MSG_SIZE + 1)}]} - } - } - assert ( - consumer._truncate_item_in_place(event=complex_item, max_size=MAX_MSG_SIZE) - <= MAX_MSG_SIZE - ) - assert complex_item["body"]["input"] is None diff --git a/tests/utils.py b/tests/utils.py deleted file mode 100644 index 6b6849a6a..000000000 --- a/tests/utils.py +++ /dev/null @@ -1,116 +0,0 @@ -import base64 -import os -import typing -from time import sleep -from uuid import uuid4 - -try: - import pydantic.v1 as pydantic # type: ignore -except ImportError: - import pydantic # type: ignore - -from llama_index.core import ( - Settings, - SimpleDirectoryReader, - StorageContext, - VectorStoreIndex, - load_index_from_storage, -) -from llama_index.core.callbacks import CallbackManager - -from langfuse.api.client import FernLangfuse - - -def create_uuid(): - return str(uuid4()) - - -def get_api(): - sleep(2) - - return FernLangfuse( - username=os.environ.get("LANGFUSE_PUBLIC_KEY"), - password=os.environ.get("LANGFUSE_SECRET_KEY"), - base_url=os.environ.get("LANGFUSE_HOST"), - ) - - -class LlmUsageWithCost(pydantic.BaseModel): - prompt_tokens: typing.Optional[int] = pydantic.Field( - alias="promptTokens", default=None - ) - completion_tokens: typing.Optional[int] = pydantic.Field( - alias="completionTokens", default=None - ) - total_tokens: typing.Optional[int] = pydantic.Field( - alias="totalTokens", default=None - ) - input_cost: typing.Optional[float] = pydantic.Field(alias="inputCost", default=None) - output_cost: typing.Optional[float] = pydantic.Field( - alias="outputCost", default=None - ) - total_cost: typing.Optional[float] = pydantic.Field(alias="totalCost", default=None) - - -class CompletionUsage(pydantic.BaseModel): - completion_tokens: int - """Number of tokens in the generated completion.""" - - prompt_tokens: int - """Number of tokens in the prompt.""" - - total_tokens: int - """Total number of tokens used in the request (prompt + completion).""" - - -class LlmUsage(pydantic.BaseModel): - prompt_tokens: typing.Optional[int] = pydantic.Field( - alias="promptTokens", default=None - ) - completion_tokens: typing.Optional[int] = pydantic.Field( - alias="completionTokens", default=None - ) - total_tokens: typing.Optional[int] = pydantic.Field( - alias="totalTokens", default=None - ) - - def json(self, **kwargs: typing.Any) -> str: - kwargs_with_defaults: typing.Any = { - "by_alias": True, - "exclude_unset": True, - **kwargs, - } - return super().json(**kwargs_with_defaults) - - def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]: - kwargs_with_defaults: typing.Any = { - "by_alias": True, - "exclude_unset": True, - **kwargs, - } - return super().dict(**kwargs_with_defaults) - - -def get_llama_index_index(callback, force_rebuild: bool = False): - if callback: - Settings.callback_manager = CallbackManager([callback]) - PERSIST_DIR = "tests/mocks/llama-index-storage" - - if not os.path.exists(PERSIST_DIR) or force_rebuild: - print("Building RAG index...") - documents = SimpleDirectoryReader( - "static", ["static/state_of_the_union_short.txt"] - ).load_data() - index = VectorStoreIndex.from_documents(documents) - index.storage_context.persist(persist_dir=PERSIST_DIR) - else: - print("Using pre-built index from storage...") - storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) - index = load_index_from_storage(storage_context) - - return index - - -def encode_file_to_base64(image_path) -> str: - with open(image_path, "rb") as file: - return base64.b64encode(file.read()).decode("utf-8") From bfbae3231fde56d4c910f247a583190834b770a5 Mon Sep 17 00:00:00 2001 From: bbs-md Date: Tue, 4 Mar 2025 13:16:17 +0200 Subject: [PATCH 4/4] Deleted tests (cherry picked from commit 0578c0d2c3e2aaa8a35f2f5fb91f1d4962bd7129) --- examples/django_example/poetry.lock | 0 examples/django_example/pyproject.toml | 0 tests/test_updating_prompt.py | 35 -------------------------- 3 files changed, 35 deletions(-) delete mode 100644 examples/django_example/poetry.lock delete mode 100644 examples/django_example/pyproject.toml delete mode 100644 tests/test_updating_prompt.py diff --git a/examples/django_example/poetry.lock b/examples/django_example/poetry.lock deleted file mode 100644 index e69de29bb..000000000 diff --git a/examples/django_example/pyproject.toml b/examples/django_example/pyproject.toml deleted file mode 100644 index e69de29bb..000000000 diff --git a/tests/test_updating_prompt.py b/tests/test_updating_prompt.py deleted file mode 100644 index addcd4528..000000000 --- a/tests/test_updating_prompt.py +++ /dev/null @@ -1,35 +0,0 @@ -from langfuse.client import Langfuse -from tests.utils import create_uuid - - -def test_update_prompt(): - langfuse = Langfuse() - prompt_name = create_uuid() - - # Create initial prompt - langfuse.create_prompt( - name=prompt_name, - prompt="test prompt", - labels=["production"], - ) - - # Update prompt labels - updated_prompt = langfuse.update_prompt( - name=prompt_name, - version=1, - new_labels=["john", "doe"], - ) - - # Fetch prompt after update (should be invalidated) - fetched_prompt = langfuse.get_prompt(prompt_name) - - # Verify the fetched prompt matches the updated values - assert fetched_prompt.name == prompt_name - assert fetched_prompt.version == 1 - print(f"Fetched prompt labels: {fetched_prompt.labels}") - print(f"Updated prompt labels: {updated_prompt.labels}") - - # production was set by the first call, latest is managed and set by Langfuse - expected_labels = sorted(["latest", "doe", "production", "john"]) - assert sorted(fetched_prompt.labels) == expected_labels - assert sorted(updated_prompt.labels) == expected_labels