-
Notifications
You must be signed in to change notification settings - Fork 38
Open
Description
Python: 3.14.0rc2+, pandas 2.3.1, OS: debian trixie
tests/test_ephys_extractor.py: 4 warnings
tests/test_mies_nwb_pipeline_output.py: 126 warnings
tests/test_run_feature_vector.py: 94 warnings
/home/thomas/devel/ipfx/ipfx/feature_extractor.py:195: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!
You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.
A typical example is when you are setting values in a column of a DataFrame, like:
df["col"][row_indexer] = value
Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
spikes_df["upstroke_downstroke_ratio"] = spikes_df["upstroke"] / -spikes_df["downstroke"]
tests/test_mies_nwb_pipeline_output.py::test_mies_nwb_pipeline_output[./tests/data/specimens/Pvalb-IRES-Cre;Ai14(IVSCC)-165172.05.02/pipeline_input.json-./tests/data/specimens/Pvalb-IRES-Cre;Ai14(IVSCC)-165172.05.02/pipeline_output.json]
tests/test_mies_nwb_pipeline_output.py::test_mies_nwb_pipeline_output[./tests/data/specimens/Vip-IRES-Cre;Ai14-331294.04.01.01/pipeline_input.json-./tests/data/specimens/Vip-IRES-Cre;Ai14-331294.04.01.01/pipeline_output.json]
tests/test_mies_nwb_pipeline_output.py::test_mies_nwb_pipeline_output[./tests/data/specimens/Ctgf-T2A-dgCre;Ai14-495723.05.02.01/pipeline_input.json-./tests/data/specimens/Ctgf-T2A-dgCre;Ai14-495723.05.02.01/pipeline_output.json]
/home/thomas/devel/ipfx/ipfx/feature_record.py:80: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!
You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.
A typical example is when you are setting values in a column of a DataFrame, like:
df["col"][row_indexer] = value
Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
sweep_table['peak_deflection'] = pd.Series(pds)
tests/test_mies_nwb_pipeline_output.py::test_mies_nwb_pipeline_output[./tests/data/specimens/Pvalb-IRES-Cre;Ai14(IVSCC)-165172.05.02/pipeline_input.json-./tests/data/specimens/Pvalb-IRES-Cre;Ai14(IVSCC)-165172.05.02/pipeline_output.json]
tests/test_mies_nwb_pipeline_output.py::test_mies_nwb_pipeline_output[./tests/data/specimens/Vip-IRES-Cre;Ai14-331294.04.01.01/pipeline_input.json-./tests/data/specimens/Vip-IRES-Cre;Ai14-331294.04.01.01/pipeline_output.json]
tests/test_mies_nwb_pipeline_output.py::test_mies_nwb_pipeline_output[./tests/data/specimens/Ctgf-T2A-dgCre;Ai14-495723.05.02.01/pipeline_input.json-./tests/data/specimens/Ctgf-T2A-dgCre;Ai14-495723.05.02.01/pipeline_output.json]
/home/thomas/devel/ipfx/ipfx/feature_record.py:81: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!
You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.
A typical example is when you are setting values in a column of a DataFrame, like:
df["col"][row_indexer] = value
Use `df.loc[row_indexer, "col"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
sweep_table['num_spikes'] = pd.Series(num_spikes)
Metadata
Metadata
Assignees
Labels
No labels